Metamath Proof Explorer


Theorem 3factsumint2

Description: Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024)

Ref Expression
Hypotheses 3factsumint2.1
|- ( ( ph /\ x e. A ) -> F e. CC )
3factsumint2.2
|- ( ( ph /\ k e. B ) -> G e. CC )
3factsumint2.3
|- ( ( ph /\ ( x e. A /\ k e. B ) ) -> H e. CC )
Assertion 3factsumint2
|- ( ph -> sum_ k e. B S. A ( F x. ( G x. H ) ) _d x = sum_ k e. B S. A ( G x. ( F x. H ) ) _d x )

Proof

Step Hyp Ref Expression
1 3factsumint2.1
 |-  ( ( ph /\ x e. A ) -> F e. CC )
2 3factsumint2.2
 |-  ( ( ph /\ k e. B ) -> G e. CC )
3 3factsumint2.3
 |-  ( ( ph /\ ( x e. A /\ k e. B ) ) -> H e. CC )
4 1 adantlr
 |-  ( ( ( ph /\ k e. B ) /\ x e. A ) -> F e. CC )
5 2 adantr
 |-  ( ( ( ph /\ k e. B ) /\ x e. A ) -> G e. CC )
6 ancom
 |-  ( ( x e. A /\ k e. B ) <-> ( k e. B /\ x e. A ) )
7 6 anbi2i
 |-  ( ( ph /\ ( x e. A /\ k e. B ) ) <-> ( ph /\ ( k e. B /\ x e. A ) ) )
8 anass
 |-  ( ( ( ph /\ k e. B ) /\ x e. A ) <-> ( ph /\ ( k e. B /\ x e. A ) ) )
9 8 bicomi
 |-  ( ( ph /\ ( k e. B /\ x e. A ) ) <-> ( ( ph /\ k e. B ) /\ x e. A ) )
10 7 9 bitri
 |-  ( ( ph /\ ( x e. A /\ k e. B ) ) <-> ( ( ph /\ k e. B ) /\ x e. A ) )
11 10 imbi1i
 |-  ( ( ( ph /\ ( x e. A /\ k e. B ) ) -> H e. CC ) <-> ( ( ( ph /\ k e. B ) /\ x e. A ) -> H e. CC ) )
12 3 11 mpbi
 |-  ( ( ( ph /\ k e. B ) /\ x e. A ) -> H e. CC )
13 4 5 12 mul12d
 |-  ( ( ( ph /\ k e. B ) /\ x e. A ) -> ( F x. ( G x. H ) ) = ( G x. ( F x. H ) ) )
14 13 itgeq2dv
 |-  ( ( ph /\ k e. B ) -> S. A ( F x. ( G x. H ) ) _d x = S. A ( G x. ( F x. H ) ) _d x )
15 14 sumeq2dv
 |-  ( ph -> sum_ k e. B S. A ( F x. ( G x. H ) ) _d x = sum_ k e. B S. A ( G x. ( F x. H ) ) _d x )