Metamath Proof Explorer


Theorem 3factsumint2

Description: Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024)

Ref Expression
Hypotheses 3factsumint2.1 φ x A F
3factsumint2.2 φ k B G
3factsumint2.3 φ x A k B H
Assertion 3factsumint2 φ k B A F G H dx = k B A G F H dx

Proof

Step Hyp Ref Expression
1 3factsumint2.1 φ x A F
2 3factsumint2.2 φ k B G
3 3factsumint2.3 φ x A k B H
4 1 adantlr φ k B x A F
5 2 adantr φ k B x A G
6 ancom x A k B k B x A
7 6 anbi2i φ x A k B φ k B x A
8 anass φ k B x A φ k B x A
9 8 bicomi φ k B x A φ k B x A
10 7 9 bitri φ x A k B φ k B x A
11 10 imbi1i φ x A k B H φ k B x A H
12 3 11 mpbi φ k B x A H
13 4 5 12 mul12d φ k B x A F G H = G F H
14 13 itgeq2dv φ k B A F G H dx = A G F H dx
15 14 sumeq2dv φ k B A F G H dx = k B A G F H dx