Step |
Hyp |
Ref |
Expression |
1 |
|
3factsumint1.1 |
⊢ 𝐴 = ( 𝐿 [,] 𝑈 ) |
2 |
|
3factsumint1.2 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
3 |
|
3factsumint1.3 |
⊢ ( 𝜑 → 𝐿 ∈ ℝ ) |
4 |
|
3factsumint1.4 |
⊢ ( 𝜑 → 𝑈 ∈ ℝ ) |
5 |
|
3factsumint1.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐹 ∈ ℂ ) |
6 |
|
3factsumint1.6 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
7 |
|
3factsumint1.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐺 ∈ ℂ ) |
8 |
|
3factsumint1.8 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐻 ∈ ℂ ) |
9 |
|
3factsumint1.9 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐻 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
10 |
|
iccmbl |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ ) → ( 𝐿 [,] 𝑈 ) ∈ dom vol ) |
11 |
3 4 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝐿 [,] 𝑈 ) ∈ dom vol ) |
12 |
1 11
|
eqeltrid |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
13 |
5
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐹 ∈ ℂ ) |
14 |
7
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐺 ∈ ℂ ) |
15 |
14 8
|
mulcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → ( 𝐺 · 𝐻 ) ∈ ℂ ) |
16 |
13 15
|
mulcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → ( 𝐹 · ( 𝐺 · 𝐻 ) ) ∈ ℂ ) |
17 |
|
ovex |
⊢ ( 𝐿 [,] 𝑈 ) ∈ V |
18 |
1 17
|
eqeltri |
⊢ 𝐴 ∈ V |
19 |
18
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐴 ∈ V ) |
20 |
13
|
anass1rs |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐹 ∈ ℂ ) |
21 |
15
|
anass1rs |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 · 𝐻 ) ∈ ℂ ) |
22 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ) |
23 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ ( 𝐺 · 𝐻 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐺 · 𝐻 ) ) ) |
24 |
19 20 21 22 23
|
offval2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( 𝐺 · 𝐻 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 · ( 𝐺 · 𝐻 ) ) ) ) |
25 |
|
cnmbf |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ ( 𝐴 –cn→ ℂ ) ) → ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ MblFn ) |
26 |
12 6 25
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ MblFn ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ MblFn ) |
28 |
8
|
anass1rs |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐻 ∈ ℂ ) |
29 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐿 ∈ ℝ ) |
30 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝑈 ∈ ℝ ) |
31 |
1
|
oveq1i |
⊢ ( 𝐴 –cn→ ℂ ) = ( ( 𝐿 [,] 𝑈 ) –cn→ ℂ ) |
32 |
31
|
eleq2i |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐻 ) ∈ ( 𝐴 –cn→ ℂ ) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐻 ) ∈ ( ( 𝐿 [,] 𝑈 ) –cn→ ℂ ) ) |
33 |
9 32
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐻 ) ∈ ( ( 𝐿 [,] 𝑈 ) –cn→ ℂ ) ) |
34 |
|
cnicciblnc |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐻 ) ∈ ( ( 𝐿 [,] 𝑈 ) –cn→ ℂ ) ) → ( 𝑥 ∈ 𝐴 ↦ 𝐻 ) ∈ 𝐿1 ) |
35 |
29 30 33 34
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐻 ) ∈ 𝐿1 ) |
36 |
7 28 35
|
iblmulc2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ ( 𝐺 · 𝐻 ) ) ∈ 𝐿1 ) |
37 |
31
|
eleq2i |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ ( 𝐴 –cn→ ℂ ) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ ( ( 𝐿 [,] 𝑈 ) –cn→ ℂ ) ) |
38 |
6 37
|
sylib |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ ( ( 𝐿 [,] 𝑈 ) –cn→ ℂ ) ) |
39 |
|
cniccbdd |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ ( ( 𝐿 [,] 𝑈 ) –cn→ ℂ ) ) → ∃ 𝑞 ∈ ℝ ∀ 𝑟 ∈ ( 𝐿 [,] 𝑈 ) ( abs ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ‘ 𝑟 ) ) ≤ 𝑞 ) |
40 |
3 4 38 39
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑞 ∈ ℝ ∀ 𝑟 ∈ ( 𝐿 [,] 𝑈 ) ( abs ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ‘ 𝑟 ) ) ≤ 𝑞 ) |
41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ∃ 𝑞 ∈ ℝ ∀ 𝑟 ∈ ( 𝐿 [,] 𝑈 ) ( abs ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ‘ 𝑟 ) ) ≤ 𝑞 ) |
42 |
5
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐹 ∈ ℂ ) |
43 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐹 ∈ ℂ → dom ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) = 𝐴 ) |
44 |
42 43
|
syl |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) = 𝐴 ) |
45 |
44 1
|
eqtrdi |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) = ( 𝐿 [,] 𝑈 ) ) |
46 |
45
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑟 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ( abs ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ‘ 𝑟 ) ) ≤ 𝑞 ↔ ∀ 𝑟 ∈ ( 𝐿 [,] 𝑈 ) ( abs ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ‘ 𝑟 ) ) ≤ 𝑞 ) ) |
47 |
46
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑞 ∈ ℝ ∀ 𝑟 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ( abs ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ‘ 𝑟 ) ) ≤ 𝑞 ↔ ∃ 𝑞 ∈ ℝ ∀ 𝑟 ∈ ( 𝐿 [,] 𝑈 ) ( abs ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ‘ 𝑟 ) ) ≤ 𝑞 ) ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( ∃ 𝑞 ∈ ℝ ∀ 𝑟 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ( abs ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ‘ 𝑟 ) ) ≤ 𝑞 ↔ ∃ 𝑞 ∈ ℝ ∀ 𝑟 ∈ ( 𝐿 [,] 𝑈 ) ( abs ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ‘ 𝑟 ) ) ≤ 𝑞 ) ) |
49 |
41 48
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ∃ 𝑞 ∈ ℝ ∀ 𝑟 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ( abs ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ‘ 𝑟 ) ) ≤ 𝑞 ) |
50 |
|
bddmulibl |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( 𝐺 · 𝐻 ) ) ∈ 𝐿1 ∧ ∃ 𝑞 ∈ ℝ ∀ 𝑟 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ( abs ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ‘ 𝑟 ) ) ≤ 𝑞 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( 𝐺 · 𝐻 ) ) ) ∈ 𝐿1 ) |
51 |
27 36 49 50
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( 𝐺 · 𝐻 ) ) ) ∈ 𝐿1 ) |
52 |
24 51
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 · ( 𝐺 · 𝐻 ) ) ) ∈ 𝐿1 ) |
53 |
12 2 16 52
|
itgfsum |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 ( 𝐹 · ( 𝐺 · 𝐻 ) ) ) ∈ 𝐿1 ∧ ∫ 𝐴 Σ 𝑘 ∈ 𝐵 ( 𝐹 · ( 𝐺 · 𝐻 ) ) d 𝑥 = Σ 𝑘 ∈ 𝐵 ∫ 𝐴 ( 𝐹 · ( 𝐺 · 𝐻 ) ) d 𝑥 ) ) |
54 |
53
|
simprd |
⊢ ( 𝜑 → ∫ 𝐴 Σ 𝑘 ∈ 𝐵 ( 𝐹 · ( 𝐺 · 𝐻 ) ) d 𝑥 = Σ 𝑘 ∈ 𝐵 ∫ 𝐴 ( 𝐹 · ( 𝐺 · 𝐻 ) ) d 𝑥 ) |