| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3factsumint1.1 |
|
| 2 |
|
3factsumint1.2 |
|
| 3 |
|
3factsumint1.3 |
|
| 4 |
|
3factsumint1.4 |
|
| 5 |
|
3factsumint1.5 |
|
| 6 |
|
3factsumint1.6 |
|
| 7 |
|
3factsumint1.7 |
|
| 8 |
|
3factsumint1.8 |
|
| 9 |
|
3factsumint1.9 |
|
| 10 |
|
iccmbl |
|
| 11 |
3 4 10
|
syl2anc |
|
| 12 |
1 11
|
eqeltrid |
|
| 13 |
5
|
adantrr |
|
| 14 |
7
|
adantrl |
|
| 15 |
14 8
|
mulcld |
|
| 16 |
13 15
|
mulcld |
|
| 17 |
|
ovex |
|
| 18 |
1 17
|
eqeltri |
|
| 19 |
18
|
a1i |
|
| 20 |
13
|
anass1rs |
|
| 21 |
15
|
anass1rs |
|
| 22 |
|
eqidd |
|
| 23 |
|
eqidd |
|
| 24 |
19 20 21 22 23
|
offval2 |
|
| 25 |
|
cnmbf |
|
| 26 |
12 6 25
|
syl2anc |
|
| 27 |
26
|
adantr |
|
| 28 |
8
|
anass1rs |
|
| 29 |
3
|
adantr |
|
| 30 |
4
|
adantr |
|
| 31 |
1
|
oveq1i |
|
| 32 |
31
|
eleq2i |
|
| 33 |
9 32
|
sylib |
|
| 34 |
|
cnicciblnc |
|
| 35 |
29 30 33 34
|
syl3anc |
|
| 36 |
7 28 35
|
iblmulc2 |
|
| 37 |
31
|
eleq2i |
|
| 38 |
6 37
|
sylib |
|
| 39 |
|
cniccbdd |
|
| 40 |
3 4 38 39
|
syl3anc |
|
| 41 |
40
|
adantr |
|
| 42 |
5
|
ralrimiva |
|
| 43 |
|
dmmptg |
|
| 44 |
42 43
|
syl |
|
| 45 |
44 1
|
eqtrdi |
|
| 46 |
45
|
raleqdv |
|
| 47 |
46
|
rexbidv |
|
| 48 |
47
|
adantr |
|
| 49 |
41 48
|
mpbird |
|
| 50 |
|
bddmulibl |
|
| 51 |
27 36 49 50
|
syl3anc |
|
| 52 |
24 51
|
eqeltrrd |
|
| 53 |
12 2 16 52
|
itgfsum |
|
| 54 |
53
|
simprd |
|