Step |
Hyp |
Ref |
Expression |
1 |
|
3factsumint1.1 |
|
2 |
|
3factsumint1.2 |
|
3 |
|
3factsumint1.3 |
|
4 |
|
3factsumint1.4 |
|
5 |
|
3factsumint1.5 |
|
6 |
|
3factsumint1.6 |
|
7 |
|
3factsumint1.7 |
|
8 |
|
3factsumint1.8 |
|
9 |
|
3factsumint1.9 |
|
10 |
|
iccmbl |
|
11 |
3 4 10
|
syl2anc |
|
12 |
1 11
|
eqeltrid |
|
13 |
5
|
adantrr |
|
14 |
7
|
adantrl |
|
15 |
14 8
|
mulcld |
|
16 |
13 15
|
mulcld |
|
17 |
|
ovex |
|
18 |
1 17
|
eqeltri |
|
19 |
18
|
a1i |
|
20 |
13
|
anass1rs |
|
21 |
15
|
anass1rs |
|
22 |
|
eqidd |
|
23 |
|
eqidd |
|
24 |
19 20 21 22 23
|
offval2 |
|
25 |
|
cnmbf |
|
26 |
12 6 25
|
syl2anc |
|
27 |
26
|
adantr |
|
28 |
8
|
anass1rs |
|
29 |
3
|
adantr |
|
30 |
4
|
adantr |
|
31 |
1
|
oveq1i |
|
32 |
31
|
eleq2i |
|
33 |
9 32
|
sylib |
|
34 |
|
cnicciblnc |
|
35 |
29 30 33 34
|
syl3anc |
|
36 |
7 28 35
|
iblmulc2 |
|
37 |
31
|
eleq2i |
|
38 |
6 37
|
sylib |
|
39 |
|
cniccbdd |
|
40 |
3 4 38 39
|
syl3anc |
|
41 |
40
|
adantr |
|
42 |
5
|
ralrimiva |
|
43 |
|
dmmptg |
|
44 |
42 43
|
syl |
|
45 |
44 1
|
eqtrdi |
|
46 |
45
|
raleqdv |
|
47 |
46
|
rexbidv |
|
48 |
47
|
adantr |
|
49 |
41 48
|
mpbird |
|
50 |
|
bddmulibl |
|
51 |
27 36 49 50
|
syl3anc |
|
52 |
24 51
|
eqeltrrd |
|
53 |
12 2 16 52
|
itgfsum |
|
54 |
53
|
simprd |
|