| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3factsumint1.1 |  | 
						
							| 2 |  | 3factsumint1.2 |  | 
						
							| 3 |  | 3factsumint1.3 |  | 
						
							| 4 |  | 3factsumint1.4 |  | 
						
							| 5 |  | 3factsumint1.5 |  | 
						
							| 6 |  | 3factsumint1.6 |  | 
						
							| 7 |  | 3factsumint1.7 |  | 
						
							| 8 |  | 3factsumint1.8 |  | 
						
							| 9 |  | 3factsumint1.9 |  | 
						
							| 10 |  | iccmbl |  | 
						
							| 11 | 3 4 10 | syl2anc |  | 
						
							| 12 | 1 11 | eqeltrid |  | 
						
							| 13 | 5 | adantrr |  | 
						
							| 14 | 7 | adantrl |  | 
						
							| 15 | 14 8 | mulcld |  | 
						
							| 16 | 13 15 | mulcld |  | 
						
							| 17 |  | ovex |  | 
						
							| 18 | 1 17 | eqeltri |  | 
						
							| 19 | 18 | a1i |  | 
						
							| 20 | 13 | anass1rs |  | 
						
							| 21 | 15 | anass1rs |  | 
						
							| 22 |  | eqidd |  | 
						
							| 23 |  | eqidd |  | 
						
							| 24 | 19 20 21 22 23 | offval2 |  | 
						
							| 25 |  | cnmbf |  | 
						
							| 26 | 12 6 25 | syl2anc |  | 
						
							| 27 | 26 | adantr |  | 
						
							| 28 | 8 | anass1rs |  | 
						
							| 29 | 3 | adantr |  | 
						
							| 30 | 4 | adantr |  | 
						
							| 31 | 1 | oveq1i |  | 
						
							| 32 | 31 | eleq2i |  | 
						
							| 33 | 9 32 | sylib |  | 
						
							| 34 |  | cnicciblnc |  | 
						
							| 35 | 29 30 33 34 | syl3anc |  | 
						
							| 36 | 7 28 35 | iblmulc2 |  | 
						
							| 37 | 31 | eleq2i |  | 
						
							| 38 | 6 37 | sylib |  | 
						
							| 39 |  | cniccbdd |  | 
						
							| 40 | 3 4 38 39 | syl3anc |  | 
						
							| 41 | 40 | adantr |  | 
						
							| 42 | 5 | ralrimiva |  | 
						
							| 43 |  | dmmptg |  | 
						
							| 44 | 42 43 | syl |  | 
						
							| 45 | 44 1 | eqtrdi |  | 
						
							| 46 | 45 | raleqdv |  | 
						
							| 47 | 46 | rexbidv |  | 
						
							| 48 | 47 | adantr |  | 
						
							| 49 | 41 48 | mpbird |  | 
						
							| 50 |  | bddmulibl |  | 
						
							| 51 | 27 36 49 50 | syl3anc |  | 
						
							| 52 | 24 51 | eqeltrrd |  | 
						
							| 53 | 12 2 16 52 | itgfsum |  | 
						
							| 54 | 53 | simprd |  |