Metamath Proof Explorer


Theorem itgfsum

Description: Take a finite sum of integrals over the same domain. (Contributed by Mario Carneiro, 24-Aug-2014)

Ref Expression
Hypotheses itgfsum.1 φ A dom vol
itgfsum.2 φ B Fin
itgfsum.3 φ x A k B C V
itgfsum.4 φ k B x A C 𝐿 1
Assertion itgfsum φ x A k B C 𝐿 1 A k B C dx = k B A C dx

Proof

Step Hyp Ref Expression
1 itgfsum.1 φ A dom vol
2 itgfsum.2 φ B Fin
3 itgfsum.3 φ x A k B C V
4 itgfsum.4 φ k B x A C 𝐿 1
5 ssid B B
6 sseq1 t = t B B
7 itgz A 0 dx = 0
8 sumeq1 t = k t C = k C
9 sum0 k C = 0
10 8 9 eqtrdi t = k t C = 0
11 10 adantr t = x A k t C = 0
12 11 itgeq2dv t = A k t C dx = A 0 dx
13 sumeq1 t = k t A C dx = k A C dx
14 sum0 k A C dx = 0
15 13 14 eqtrdi t = k t A C dx = 0
16 7 12 15 3eqtr4a t = A k t C dx = k t A C dx
17 10 mpteq2dv t = x A k t C = x A 0
18 fconstmpt A × 0 = x A 0
19 17 18 eqtr4di t = x A k t C = A × 0
20 19 eleq1d t = x A k t C 𝐿 1 A × 0 𝐿 1
21 20 anbi1d t = x A k t C 𝐿 1 A k t C dx = k t A C dx A × 0 𝐿 1 A k t C dx = k t A C dx
22 16 21 mpbiran2d t = x A k t C 𝐿 1 A k t C dx = k t A C dx A × 0 𝐿 1
23 6 22 imbi12d t = t B x A k t C 𝐿 1 A k t C dx = k t A C dx B A × 0 𝐿 1
24 23 imbi2d t = φ t B x A k t C 𝐿 1 A k t C dx = k t A C dx φ B A × 0 𝐿 1
25 sseq1 t = w t B w B
26 sumeq1 t = w k t C = k w C
27 26 mpteq2dv t = w x A k t C = x A k w C
28 27 eleq1d t = w x A k t C 𝐿 1 x A k w C 𝐿 1
29 26 adantr t = w x A k t C = k w C
30 29 itgeq2dv t = w A k t C dx = A k w C dx
31 sumeq1 t = w k t A C dx = k w A C dx
32 30 31 eqeq12d t = w A k t C dx = k t A C dx A k w C dx = k w A C dx
33 28 32 anbi12d t = w x A k t C 𝐿 1 A k t C dx = k t A C dx x A k w C 𝐿 1 A k w C dx = k w A C dx
34 25 33 imbi12d t = w t B x A k t C 𝐿 1 A k t C dx = k t A C dx w B x A k w C 𝐿 1 A k w C dx = k w A C dx
35 34 imbi2d t = w φ t B x A k t C 𝐿 1 A k t C dx = k t A C dx φ w B x A k w C 𝐿 1 A k w C dx = k w A C dx
36 sseq1 t = w z t B w z B
37 sumeq1 t = w z k t C = k w z C
38 37 mpteq2dv t = w z x A k t C = x A k w z C
39 38 eleq1d t = w z x A k t C 𝐿 1 x A k w z C 𝐿 1
40 37 adantr t = w z x A k t C = k w z C
41 40 itgeq2dv t = w z A k t C dx = A k w z C dx
42 sumeq1 t = w z k t A C dx = k w z A C dx
43 41 42 eqeq12d t = w z A k t C dx = k t A C dx A k w z C dx = k w z A C dx
44 39 43 anbi12d t = w z x A k t C 𝐿 1 A k t C dx = k t A C dx x A k w z C 𝐿 1 A k w z C dx = k w z A C dx
45 36 44 imbi12d t = w z t B x A k t C 𝐿 1 A k t C dx = k t A C dx w z B x A k w z C 𝐿 1 A k w z C dx = k w z A C dx
46 45 imbi2d t = w z φ t B x A k t C 𝐿 1 A k t C dx = k t A C dx φ w z B x A k w z C 𝐿 1 A k w z C dx = k w z A C dx
47 sseq1 t = B t B B B
48 sumeq1 t = B k t C = k B C
49 48 mpteq2dv t = B x A k t C = x A k B C
50 49 eleq1d t = B x A k t C 𝐿 1 x A k B C 𝐿 1
51 48 adantr t = B x A k t C = k B C
52 51 itgeq2dv t = B A k t C dx = A k B C dx
53 sumeq1 t = B k t A C dx = k B A C dx
54 52 53 eqeq12d t = B A k t C dx = k t A C dx A k B C dx = k B A C dx
55 50 54 anbi12d t = B x A k t C 𝐿 1 A k t C dx = k t A C dx x A k B C 𝐿 1 A k B C dx = k B A C dx
56 47 55 imbi12d t = B t B x A k t C 𝐿 1 A k t C dx = k t A C dx B B x A k B C 𝐿 1 A k B C dx = k B A C dx
57 56 imbi2d t = B φ t B x A k t C 𝐿 1 A k t C dx = k t A C dx φ B B x A k B C 𝐿 1 A k B C dx = k B A C dx
58 ibl0 A dom vol A × 0 𝐿 1
59 1 58 syl φ A × 0 𝐿 1
60 59 a1d φ B A × 0 𝐿 1
61 ssun1 w w z
62 sstr w w z w z B w B
63 61 62 mpan w z B w B
64 63 imim1i w B x A k w C 𝐿 1 A k w C dx = k w A C dx w z B x A k w C 𝐿 1 A k w C dx = k w A C dx
65 nfcv _ m C
66 nfcsb1v _ k m / k C
67 csbeq1a k = m C = m / k C
68 65 66 67 cbvsumi k w z C = m w z m / k C
69 simprl φ ¬ z w w z B ¬ z w
70 disjsn w z = ¬ z w
71 69 70 sylibr φ ¬ z w w z B w z =
72 71 adantr φ ¬ z w w z B x A w z =
73 eqidd φ ¬ z w w z B x A w z = w z
74 2 adantr φ ¬ z w w z B B Fin
75 simprr φ ¬ z w w z B w z B
76 74 75 ssfid φ ¬ z w w z B w z Fin
77 76 adantr φ ¬ z w w z B x A w z Fin
78 simplrr φ ¬ z w w z B x A w z B
79 78 sselda φ ¬ z w w z B x A m w z m B
80 iblmbf x A C 𝐿 1 x A C MblFn
81 4 80 syl φ k B x A C MblFn
82 3 anass1rs φ k B x A C V
83 81 82 mbfmptcl φ k B x A C
84 83 an32s φ x A k B C
85 84 ralrimiva φ x A k B C
86 85 adantlr φ ¬ z w w z B x A k B C
87 65 nfel1 m C
88 66 nfel1 k m / k C
89 67 eleq1d k = m C m / k C
90 87 88 89 cbvralw k B C m B m / k C
91 86 90 sylib φ ¬ z w w z B x A m B m / k C
92 91 r19.21bi φ ¬ z w w z B x A m B m / k C
93 79 92 syldan φ ¬ z w w z B x A m w z m / k C
94 72 73 77 93 fsumsplit φ ¬ z w w z B x A m w z m / k C = m w m / k C + m z m / k C
95 vex z V
96 csbeq1 m = z m / k C = z / k C
97 96 eleq1d m = z m / k C z / k C
98 75 unssbd φ ¬ z w w z B z B
99 95 snss z B z B
100 98 99 sylibr φ ¬ z w w z B z B
101 100 adantr φ ¬ z w w z B x A z B
102 97 91 101 rspcdva φ ¬ z w w z B x A z / k C
103 96 sumsn z V z / k C m z m / k C = z / k C
104 95 102 103 sylancr φ ¬ z w w z B x A m z m / k C = z / k C
105 104 oveq2d φ ¬ z w w z B x A m w m / k C + m z m / k C = m w m / k C + z / k C
106 94 105 eqtrd φ ¬ z w w z B x A m w z m / k C = m w m / k C + z / k C
107 68 106 eqtrid φ ¬ z w w z B x A k w z C = m w m / k C + z / k C
108 107 mpteq2dva φ ¬ z w w z B x A k w z C = x A m w m / k C + z / k C
109 nfcv _ y m w m / k C + z / k C
110 nfcsb1v _ x y / x m w m / k C
111 nfcv _ x +
112 nfcsb1v _ x y / x z / k C
113 110 111 112 nfov _ x y / x m w m / k C + y / x z / k C
114 csbeq1a x = y m w m / k C = y / x m w m / k C
115 csbeq1a x = y z / k C = y / x z / k C
116 114 115 oveq12d x = y m w m / k C + z / k C = y / x m w m / k C + y / x z / k C
117 109 113 116 cbvmpt x A m w m / k C + z / k C = y A y / x m w m / k C + y / x z / k C
118 108 117 eqtrdi φ ¬ z w w z B x A k w z C = y A y / x m w m / k C + y / x z / k C
119 118 adantr φ ¬ z w w z B x A k w C 𝐿 1 A k w C dx = k w A C dx x A k w z C = y A y / x m w m / k C + y / x z / k C
120 sumex m w m / k C V
121 120 csbex y / x m w m / k C V
122 121 a1i φ ¬ z w w z B x A k w C 𝐿 1 A k w C dx = k w A C dx y A y / x m w m / k C V
123 65 66 67 cbvsumi k w C = m w m / k C
124 123 mpteq2i x A k w C = x A m w m / k C
125 nfcv _ y m w m / k C
126 125 110 114 cbvmpt x A m w m / k C = y A y / x m w m / k C
127 124 126 eqtri x A k w C = y A y / x m w m / k C
128 simprl φ ¬ z w w z B x A k w C 𝐿 1 A k w C dx = k w A C dx x A k w C 𝐿 1
129 127 128 eqeltrrid φ ¬ z w w z B x A k w C 𝐿 1 A k w C dx = k w A C dx y A y / x m w m / k C 𝐿 1
130 102 elexd φ ¬ z w w z B x A z / k C V
131 130 ralrimiva φ ¬ z w w z B x A z / k C V
132 131 adantr φ ¬ z w w z B x A k w C 𝐿 1 A k w C dx = k w A C dx x A z / k C V
133 nfv y z / k C V
134 112 nfel1 x y / x z / k C V
135 115 eleq1d x = y z / k C V y / x z / k C V
136 133 134 135 cbvralw x A z / k C V y A y / x z / k C V
137 132 136 sylib φ ¬ z w w z B x A k w C 𝐿 1 A k w C dx = k w A C dx y A y / x z / k C V
138 137 r19.21bi φ ¬ z w w z B x A k w C 𝐿 1 A k w C dx = k w A C dx y A y / x z / k C V
139 nfcv _ y z / k C
140 139 112 115 cbvmpt x A z / k C = y A y / x z / k C
141 96 mpteq2dv m = z x A m / k C = x A z / k C
142 141 eleq1d m = z x A m / k C 𝐿 1 x A z / k C 𝐿 1
143 4 ralrimiva φ k B x A C 𝐿 1
144 nfv m x A C 𝐿 1
145 nfcv _ k A
146 145 66 nfmpt _ k x A m / k C
147 146 nfel1 k x A m / k C 𝐿 1
148 67 mpteq2dv k = m x A C = x A m / k C
149 148 eleq1d k = m x A C 𝐿 1 x A m / k C 𝐿 1
150 144 147 149 cbvralw k B x A C 𝐿 1 m B x A m / k C 𝐿 1
151 143 150 sylib φ m B x A m / k C 𝐿 1
152 151 adantr φ ¬ z w w z B m B x A m / k C 𝐿 1
153 142 152 100 rspcdva φ ¬ z w w z B x A z / k C 𝐿 1
154 140 153 eqeltrrid φ ¬ z w w z B y A y / x z / k C 𝐿 1
155 154 adantr φ ¬ z w w z B x A k w C 𝐿 1 A k w C dx = k w A C dx y A y / x z / k C 𝐿 1
156 122 129 138 155 ibladd φ ¬ z w w z B x A k w C 𝐿 1 A k w C dx = k w A C dx y A y / x m w m / k C + y / x z / k C 𝐿 1
157 119 156 eqeltrd φ ¬ z w w z B x A k w C 𝐿 1 A k w C dx = k w A C dx x A k w z C 𝐿 1
158 122 129 138 155 itgadd φ ¬ z w w z B x A k w C 𝐿 1 A k w C dx = k w A C dx A y / x m w m / k C + y / x z / k C dy = A y / x m w m / k C dy + A y / x z / k C dy
159 116 109 113 cbvitg A m w m / k C + z / k C dx = A y / x m w m / k C + y / x z / k C dy
160 114 125 110 cbvitg A m w m / k C dx = A y / x m w m / k C dy
161 115 139 112 cbvitg A z / k C dx = A y / x z / k C dy
162 160 161 oveq12i A m w m / k C dx + A z / k C dx = A y / x m w m / k C dy + A y / x z / k C dy
163 158 159 162 3eqtr4g φ ¬ z w w z B x A k w C 𝐿 1 A k w C dx = k w A C dx A m w m / k C + z / k C dx = A m w m / k C dx + A z / k C dx
164 106 itgeq2dv φ ¬ z w w z B A m w z m / k C dx = A m w m / k C + z / k C dx
165 164 adantr φ ¬ z w w z B x A k w C 𝐿 1 A k w C dx = k w A C dx A m w z m / k C dx = A m w m / k C + z / k C dx
166 eqidd φ ¬ z w w z B w z = w z
167 75 sselda φ ¬ z w w z B m w z m B
168 92 an32s φ ¬ z w w z B m B x A m / k C
169 152 r19.21bi φ ¬ z w w z B m B x A m / k C 𝐿 1
170 168 169 itgcl φ ¬ z w w z B m B A m / k C dx
171 167 170 syldan φ ¬ z w w z B m w z A m / k C dx
172 71 166 76 171 fsumsplit φ ¬ z w w z B m w z A m / k C dx = m w A m / k C dx + m z A m / k C dx
173 172 adantr φ ¬ z w w z B x A k w C 𝐿 1 A k w C dx = k w A C dx m w z A m / k C dx = m w A m / k C dx + m z A m / k C dx
174 simprr φ ¬ z w w z B x A k w C 𝐿 1 A k w C dx = k w A C dx A k w C dx = k w A C dx
175 itgeq2 x A k w C = m w m / k C A k w C dx = A m w m / k C dx
176 123 a1i x A k w C = m w m / k C
177 175 176 mprg A k w C dx = A m w m / k C dx
178 nfcv _ m A C dx
179 145 66 nfitg _ k A m / k C dx
180 67 adantr k = m x A C = m / k C
181 180 itgeq2dv k = m A C dx = A m / k C dx
182 178 179 181 cbvsumi k w A C dx = m w A m / k C dx
183 174 177 182 3eqtr3g φ ¬ z w w z B x A k w C 𝐿 1 A k w C dx = k w A C dx A m w m / k C dx = m w A m / k C dx
184 102 153 itgcl φ ¬ z w w z B A z / k C dx
185 184 adantr φ ¬ z w w z B x A k w C 𝐿 1 A k w C dx = k w A C dx A z / k C dx
186 96 adantr m = z x A m / k C = z / k C
187 186 itgeq2dv m = z A m / k C dx = A z / k C dx
188 187 sumsn z V A z / k C dx m z A m / k C dx = A z / k C dx
189 95 185 188 sylancr φ ¬ z w w z B x A k w C 𝐿 1 A k w C dx = k w A C dx m z A m / k C dx = A z / k C dx
190 189 eqcomd φ ¬ z w w z B x A k w C 𝐿 1 A k w C dx = k w A C dx A z / k C dx = m z A m / k C dx
191 183 190 oveq12d φ ¬ z w w z B x A k w C 𝐿 1 A k w C dx = k w A C dx A m w m / k C dx + A z / k C dx = m w A m / k C dx + m z A m / k C dx
192 173 191 eqtr4d φ ¬ z w w z B x A k w C 𝐿 1 A k w C dx = k w A C dx m w z A m / k C dx = A m w m / k C dx + A z / k C dx
193 163 165 192 3eqtr4d φ ¬ z w w z B x A k w C 𝐿 1 A k w C dx = k w A C dx A m w z m / k C dx = m w z A m / k C dx
194 itgeq2 x A k w z C = m w z m / k C A k w z C dx = A m w z m / k C dx
195 68 a1i x A k w z C = m w z m / k C
196 194 195 mprg A k w z C dx = A m w z m / k C dx
197 178 179 181 cbvsumi k w z A C dx = m w z A m / k C dx
198 193 196 197 3eqtr4g φ ¬ z w w z B x A k w C 𝐿 1 A k w C dx = k w A C dx A k w z C dx = k w z A C dx
199 157 198 jca φ ¬ z w w z B x A k w C 𝐿 1 A k w C dx = k w A C dx x A k w z C 𝐿 1 A k w z C dx = k w z A C dx
200 199 ex φ ¬ z w w z B x A k w C 𝐿 1 A k w C dx = k w A C dx x A k w z C 𝐿 1 A k w z C dx = k w z A C dx
201 200 expr φ ¬ z w w z B x A k w C 𝐿 1 A k w C dx = k w A C dx x A k w z C 𝐿 1 A k w z C dx = k w z A C dx
202 201 a2d φ ¬ z w w z B x A k w C 𝐿 1 A k w C dx = k w A C dx w z B x A k w z C 𝐿 1 A k w z C dx = k w z A C dx
203 64 202 syl5 φ ¬ z w w B x A k w C 𝐿 1 A k w C dx = k w A C dx w z B x A k w z C 𝐿 1 A k w z C dx = k w z A C dx
204 203 expcom ¬ z w φ w B x A k w C 𝐿 1 A k w C dx = k w A C dx w z B x A k w z C 𝐿 1 A k w z C dx = k w z A C dx
205 204 adantl w Fin ¬ z w φ w B x A k w C 𝐿 1 A k w C dx = k w A C dx w z B x A k w z C 𝐿 1 A k w z C dx = k w z A C dx
206 205 a2d w Fin ¬ z w φ w B x A k w C 𝐿 1 A k w C dx = k w A C dx φ w z B x A k w z C 𝐿 1 A k w z C dx = k w z A C dx
207 24 35 46 57 60 206 findcard2s B Fin φ B B x A k B C 𝐿 1 A k B C dx = k B A C dx
208 2 207 mpcom φ B B x A k B C 𝐿 1 A k B C dx = k B A C dx
209 5 208 mpi φ x A k B C 𝐿 1 A k B C dx = k B A C dx