Description: Bound-variable hypothesis builder for an integral: if y is (effectively) not free in A and B , it is not free in S. A B _d x . (Contributed by Mario Carneiro, 28-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nfitg.1 | |
|
nfitg.2 | |
||
Assertion | nfitg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfitg.1 | |
|
2 | nfitg.2 | |
|
3 | eqid | |
|
4 | 3 | dfitg | |
5 | nfcv | |
|
6 | nfcv | |
|
7 | nfcv | |
|
8 | nfcv | |
|
9 | nfcv | |
|
10 | 1 | nfcri | |
11 | nfcv | |
|
12 | nfcv | |
|
13 | nfcv | |
|
14 | nfcv | |
|
15 | 2 14 6 | nfov | |
16 | 13 15 | nffv | |
17 | 11 12 16 | nfbr | |
18 | 10 17 | nfan | |
19 | 18 16 11 | nfif | |
20 | 9 19 | nfmpt | |
21 | 8 20 | nffv | |
22 | 6 7 21 | nfov | |
23 | 5 22 | nfsum | |
24 | 4 23 | nfcxfr | |