| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfitg.1 |
|- F/_ y A |
| 2 |
|
nfitg.2 |
|- F/_ y B |
| 3 |
|
eqid |
|- ( Re ` ( B / ( _i ^ k ) ) ) = ( Re ` ( B / ( _i ^ k ) ) ) |
| 4 |
3
|
dfitg |
|- S. A B _d x = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) |
| 5 |
|
nfcv |
|- F/_ y ( 0 ... 3 ) |
| 6 |
|
nfcv |
|- F/_ y ( _i ^ k ) |
| 7 |
|
nfcv |
|- F/_ y x. |
| 8 |
|
nfcv |
|- F/_ y S.2 |
| 9 |
|
nfcv |
|- F/_ y RR |
| 10 |
1
|
nfcri |
|- F/ y x e. A |
| 11 |
|
nfcv |
|- F/_ y 0 |
| 12 |
|
nfcv |
|- F/_ y <_ |
| 13 |
|
nfcv |
|- F/_ y Re |
| 14 |
|
nfcv |
|- F/_ y / |
| 15 |
2 14 6
|
nfov |
|- F/_ y ( B / ( _i ^ k ) ) |
| 16 |
13 15
|
nffv |
|- F/_ y ( Re ` ( B / ( _i ^ k ) ) ) |
| 17 |
11 12 16
|
nfbr |
|- F/ y 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) |
| 18 |
10 17
|
nfan |
|- F/ y ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) |
| 19 |
18 16 11
|
nfif |
|- F/_ y if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) |
| 20 |
9 19
|
nfmpt |
|- F/_ y ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) |
| 21 |
8 20
|
nffv |
|- F/_ y ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) |
| 22 |
6 7 21
|
nfov |
|- F/_ y ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) |
| 23 |
5 22
|
nfsum |
|- F/_ y sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) |
| 24 |
4 23
|
nfcxfr |
|- F/_ y S. A B _d x |