| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfitg.1 |
⊢ Ⅎ 𝑦 𝐴 |
| 2 |
|
nfitg.2 |
⊢ Ⅎ 𝑦 𝐵 |
| 3 |
|
eqid |
⊢ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) |
| 4 |
3
|
dfitg |
⊢ ∫ 𝐴 𝐵 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
| 5 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 0 ... 3 ) |
| 6 |
|
nfcv |
⊢ Ⅎ 𝑦 ( i ↑ 𝑘 ) |
| 7 |
|
nfcv |
⊢ Ⅎ 𝑦 · |
| 8 |
|
nfcv |
⊢ Ⅎ 𝑦 ∫2 |
| 9 |
|
nfcv |
⊢ Ⅎ 𝑦 ℝ |
| 10 |
1
|
nfcri |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 |
| 11 |
|
nfcv |
⊢ Ⅎ 𝑦 0 |
| 12 |
|
nfcv |
⊢ Ⅎ 𝑦 ≤ |
| 13 |
|
nfcv |
⊢ Ⅎ 𝑦 ℜ |
| 14 |
|
nfcv |
⊢ Ⅎ 𝑦 / |
| 15 |
2 14 6
|
nfov |
⊢ Ⅎ 𝑦 ( 𝐵 / ( i ↑ 𝑘 ) ) |
| 16 |
13 15
|
nffv |
⊢ Ⅎ 𝑦 ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) |
| 17 |
11 12 16
|
nfbr |
⊢ Ⅎ 𝑦 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) |
| 18 |
10 17
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) |
| 19 |
18 16 11
|
nfif |
⊢ Ⅎ 𝑦 if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) |
| 20 |
9 19
|
nfmpt |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
| 21 |
8 20
|
nffv |
⊢ Ⅎ 𝑦 ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) |
| 22 |
6 7 21
|
nfov |
⊢ Ⅎ 𝑦 ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
| 23 |
5 22
|
nfsum |
⊢ Ⅎ 𝑦 Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
| 24 |
4 23
|
nfcxfr |
⊢ Ⅎ 𝑦 ∫ 𝐴 𝐵 d 𝑥 |