Metamath Proof Explorer


Theorem cbvitg

Description: Change bound variable in an integral. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Hypotheses cbvitg.1 x=yB=C
cbvitg.2 _yB
cbvitg.3 _xC
Assertion cbvitg ABdx=ACdy

Proof

Step Hyp Ref Expression
1 cbvitg.1 x=yB=C
2 cbvitg.2 _yB
3 cbvitg.3 _xC
4 nfv yxA
5 nfcv _y0
6 nfcv _y
7 nfcv _y
8 nfcv _y÷
9 nfcv _yik
10 2 8 9 nfov _yBik
11 7 10 nffv _yBik
12 5 6 11 nfbr y0Bik
13 4 12 nfan yxA0Bik
14 13 11 5 nfif _yifxA0BikBik0
15 nfv xyA
16 nfcv _x0
17 nfcv _x
18 nfcv _x
19 nfcv _x÷
20 nfcv _xik
21 3 19 20 nfov _xCik
22 18 21 nffv _xCik
23 16 17 22 nfbr x0Cik
24 15 23 nfan xyA0Cik
25 24 22 16 nfif _xifyA0CikCik0
26 eleq1w x=yxAyA
27 1 fvoveq1d x=yBik=Cik
28 27 breq2d x=y0Bik0Cik
29 26 28 anbi12d x=yxA0BikyA0Cik
30 29 27 ifbieq1d x=yifxA0BikBik0=ifyA0CikCik0
31 14 25 30 cbvmpt xifxA0BikBik0=yifyA0CikCik0
32 31 a1i k03xifxA0BikBik0=yifyA0CikCik0
33 32 fveq2d k032xifxA0BikBik0=2yifyA0CikCik0
34 33 oveq2d k03ik2xifxA0BikBik0=ik2yifyA0CikCik0
35 34 sumeq2i k=03ik2xifxA0BikBik0=k=03ik2yifyA0CikCik0
36 eqid Bik=Bik
37 36 dfitg ABdx=k=03ik2xifxA0BikBik0
38 eqid Cik=Cik
39 38 dfitg ACdy=k=03ik2yifyA0CikCik0
40 35 37 39 3eqtr4i ABdx=ACdy