Metamath Proof Explorer


Theorem cbvitgv

Description: Change bound variable in an integral. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Hypothesis cbvitg.1 x = y B = C
Assertion cbvitgv A B dx = A C dy

Proof

Step Hyp Ref Expression
1 cbvitg.1 x = y B = C
2 1 fvoveq1d x = y B i k = C i k
3 eleq1w x = y x A y A
4 3 anbi1d x = y x A 0 v y A 0 v
5 4 ifbid x = y if x A 0 v v 0 = if y A 0 v v 0
6 2 5 csbeq12dv x = y B i k / v if x A 0 v v 0 = C i k / v if y A 0 v v 0
7 6 cbvmptv x B i k / v if x A 0 v v 0 = y C i k / v if y A 0 v v 0
8 7 fveq2i 2 x B i k / v if x A 0 v v 0 = 2 y C i k / v if y A 0 v v 0
9 8 oveq2i i k 2 x B i k / v if x A 0 v v 0 = i k 2 y C i k / v if y A 0 v v 0
10 9 a1i i k 2 x B i k / v if x A 0 v v 0 = i k 2 y C i k / v if y A 0 v v 0
11 10 sumeq2sdv k = 0 3 i k 2 x B i k / v if x A 0 v v 0 = k = 0 3 i k 2 y C i k / v if y A 0 v v 0
12 11 mptru k = 0 3 i k 2 x B i k / v if x A 0 v v 0 = k = 0 3 i k 2 y C i k / v if y A 0 v v 0
13 df-itg A B dx = k = 0 3 i k 2 x B i k / v if x A 0 v v 0
14 df-itg A C dy = k = 0 3 i k 2 y C i k / v if y A 0 v v 0
15 12 13 14 3eqtr4i A B dx = A C dy