Metamath Proof Explorer


Theorem iblmbf

Description: An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014)

Ref Expression
Assertion iblmbf F𝐿1FMblFn

Proof

Step Hyp Ref Expression
1 df-ibl 𝐿1=fMblFn|k032xfxik/yifxdomf0yy0
2 1 ssrab3 𝐿1MblFn
3 2 sseli F𝐿1FMblFn