Metamath Proof Explorer


Definition df-ibl

Description: Define the class of integrable functions on the reals. A function is integrable if it is measurable and the integrals of the pieces of the function are all finite. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion df-ibl 𝐿1=fMblFn|k032xfxik/yifxdomf0yy0

Detailed syntax breakdown

Step Hyp Ref Expression
0 cibl class𝐿1
1 vf setvarf
2 cmbf classMblFn
3 vk setvark
4 cc0 class0
5 cfz class
6 c3 class3
7 4 6 5 co class03
8 citg2 class2
9 vx setvarx
10 cr class
11 cre class
12 1 cv setvarf
13 9 cv setvarx
14 13 12 cfv classfx
15 cdiv class÷
16 ci classi
17 cexp class^
18 3 cv setvark
19 16 18 17 co classik
20 14 19 15 co classfxik
21 20 11 cfv classfxik
22 vy setvary
23 12 cdm classdomf
24 13 23 wcel wffxdomf
25 cle class
26 22 cv setvary
27 4 26 25 wbr wff0y
28 24 27 wa wffxdomf0y
29 28 26 4 cif classifxdomf0yy0
30 22 21 29 csb classfxik/yifxdomf0yy0
31 9 10 30 cmpt classxfxik/yifxdomf0yy0
32 31 8 cfv class2xfxik/yifxdomf0yy0
33 32 10 wcel wff2xfxik/yifxdomf0yy0
34 33 3 7 wral wffk032xfxik/yifxdomf0yy0
35 34 1 2 crab classfMblFn|k032xfxik/yifxdomf0yy0
36 0 35 wceq wff𝐿1=fMblFn|k032xfxik/yifxdomf0yy0