Metamath Proof Explorer


Theorem ibl0

Description: The zero function is integrable on any measurable set. (Unlike iblconst , this does not require A to have finite measure.) (Contributed by Mario Carneiro, 23-Aug-2014)

Ref Expression
Assertion ibl0 AdomvolA×0𝐿1

Proof

Step Hyp Ref Expression
1 0cn 0
2 mbfconst Adomvol0A×0MblFn
3 1 2 mpan2 AdomvolA×0MblFn
4 ax-icn i
5 ine0 i0
6 elfzelz k03k
7 6 ad2antlr Adomvolk03xAk
8 expclz ii0kik
9 expne0i ii0kik0
10 8 9 div0d ii0k0ik=0
11 4 5 7 10 mp3an12i Adomvolk03xA0ik=0
12 11 fveq2d Adomvolk03xA0ik=0
13 re0 0=0
14 12 13 eqtrdi Adomvolk03xA0ik=0
15 14 itgvallem3 Adomvolk032xifxA00ik0ik0=0
16 0re 0
17 15 16 eqeltrdi Adomvolk032xifxA00ik0ik0
18 17 ralrimiva Adomvolk032xifxA00ik0ik0
19 eqidd AdomvolxifxA00ik0ik0=xifxA00ik0ik0
20 eqidd AdomvolxA0ik=0ik
21 c0ex 0V
22 21 fconst A×0:A0
23 fdm A×0:A0domA×0=A
24 22 23 mp1i AdomvoldomA×0=A
25 21 fvconst2 xAA×0x=0
26 25 adantl AdomvolxAA×0x=0
27 19 20 24 26 isibl AdomvolA×0𝐿1A×0MblFnk032xifxA00ik0ik0
28 3 18 27 mpbir2and AdomvolA×0𝐿1