Description: The zero function is integrable on any measurable set. (Unlike iblconst , this does not require A to have finite measure.) (Contributed by Mario Carneiro, 23-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | ibl0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn | |
|
2 | mbfconst | |
|
3 | 1 2 | mpan2 | |
4 | ax-icn | |
|
5 | ine0 | |
|
6 | elfzelz | |
|
7 | 6 | ad2antlr | |
8 | expclz | |
|
9 | expne0i | |
|
10 | 8 9 | div0d | |
11 | 4 5 7 10 | mp3an12i | |
12 | 11 | fveq2d | |
13 | re0 | |
|
14 | 12 13 | eqtrdi | |
15 | 14 | itgvallem3 | |
16 | 0re | |
|
17 | 15 16 | eqeltrdi | |
18 | 17 | ralrimiva | |
19 | eqidd | |
|
20 | eqidd | |
|
21 | c0ex | |
|
22 | 21 | fconst | |
23 | fdm | |
|
24 | 22 23 | mp1i | |
25 | 21 | fvconst2 | |
26 | 25 | adantl | |
27 | 19 20 24 26 | isibl | |
28 | 3 18 27 | mpbir2and | |