Step |
Hyp |
Ref |
Expression |
1 |
|
fconstmpt |
|
2 |
|
mbfconst |
|
3 |
2
|
3adant2 |
|
4 |
1 3
|
eqeltrrid |
|
5 |
|
ifan |
|
6 |
5
|
mpteq2i |
|
7 |
6
|
fveq2i |
|
8 |
|
simpl1 |
|
9 |
|
simpl2 |
|
10 |
|
simpl3 |
|
11 |
|
ax-icn |
|
12 |
|
ine0 |
|
13 |
|
elfzelz |
|
14 |
13
|
adantl |
|
15 |
|
expclz |
|
16 |
11 12 14 15
|
mp3an12i |
|
17 |
|
expne0i |
|
18 |
11 12 14 17
|
mp3an12i |
|
19 |
10 16 18
|
divcld |
|
20 |
19
|
recld |
|
21 |
|
0re |
|
22 |
|
ifcl |
|
23 |
20 21 22
|
sylancl |
|
24 |
|
max1 |
|
25 |
21 20 24
|
sylancr |
|
26 |
|
elrege0 |
|
27 |
23 25 26
|
sylanbrc |
|
28 |
|
itg2const |
|
29 |
8 9 27 28
|
syl3anc |
|
30 |
7 29
|
eqtrid |
|
31 |
23 9
|
remulcld |
|
32 |
30 31
|
eqeltrd |
|
33 |
32
|
ralrimiva |
|
34 |
|
eqidd |
|
35 |
|
eqidd |
|
36 |
|
simpl3 |
|
37 |
34 35 36
|
isibl2 |
|
38 |
4 33 37
|
mpbir2and |
|
39 |
1 38
|
eqeltrid |
|