Step |
Hyp |
Ref |
Expression |
1 |
|
reex |
|
2 |
1
|
a1i |
|
3 |
|
simpl3 |
|
4 |
|
1re |
|
5 |
|
0re |
|
6 |
4 5
|
ifcli |
|
7 |
6
|
a1i |
|
8 |
|
fconstmpt |
|
9 |
8
|
a1i |
|
10 |
|
eqidd |
|
11 |
2 3 7 9 10
|
offval2 |
|
12 |
|
ovif2 |
|
13 |
|
simp3 |
|
14 |
|
elrege0 |
|
15 |
13 14
|
sylib |
|
16 |
15
|
simpld |
|
17 |
16
|
recnd |
|
18 |
17
|
mulid1d |
|
19 |
17
|
mul01d |
|
20 |
18 19
|
ifeq12d |
|
21 |
12 20
|
eqtrid |
|
22 |
21
|
mpteq2dv |
|
23 |
11 22
|
eqtrd |
|
24 |
|
eqid |
|
25 |
24
|
i1f1 |
|
26 |
25
|
3adant3 |
|
27 |
26 16
|
i1fmulc |
|
28 |
23 27
|
eqeltrrd |
|
29 |
15
|
simprd |
|
30 |
|
0le0 |
|
31 |
|
breq2 |
|
32 |
|
breq2 |
|
33 |
31 32
|
ifboth |
|
34 |
29 30 33
|
sylancl |
|
35 |
34
|
ralrimivw |
|
36 |
|
ax-resscn |
|
37 |
36
|
a1i |
|
38 |
16
|
adantr |
|
39 |
|
ifcl |
|
40 |
38 5 39
|
sylancl |
|
41 |
40
|
ralrimiva |
|
42 |
|
eqid |
|
43 |
42
|
fnmpt |
|
44 |
41 43
|
syl |
|
45 |
37 44
|
0pledm |
|
46 |
5
|
a1i |
|
47 |
|
fconstmpt |
|
48 |
47
|
a1i |
|
49 |
|
eqidd |
|
50 |
2 46 40 48 49
|
ofrfval2 |
|
51 |
45 50
|
bitrd |
|
52 |
35 51
|
mpbird |
|
53 |
|
itg2itg1 |
|
54 |
28 52 53
|
syl2anc |
|
55 |
26 16
|
itg1mulc |
|
56 |
23
|
fveq2d |
|
57 |
24
|
itg11 |
|
58 |
57
|
3adant3 |
|
59 |
58
|
oveq2d |
|
60 |
55 56 59
|
3eqtr3d |
|
61 |
54 60
|
eqtrd |
|