Metamath Proof Explorer


Theorem itg2const

Description: Integral of a constant function. (Contributed by Mario Carneiro, 12-Aug-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Assertion itg2const A dom vol vol A B 0 +∞ 2 x if x A B 0 = B vol A

Proof

Step Hyp Ref Expression
1 reex V
2 1 a1i A dom vol vol A B 0 +∞ V
3 simpl3 A dom vol vol A B 0 +∞ x B 0 +∞
4 1re 1
5 0re 0
6 4 5 ifcli if x A 1 0
7 6 a1i A dom vol vol A B 0 +∞ x if x A 1 0
8 fconstmpt × B = x B
9 8 a1i A dom vol vol A B 0 +∞ × B = x B
10 eqidd A dom vol vol A B 0 +∞ x if x A 1 0 = x if x A 1 0
11 2 3 7 9 10 offval2 A dom vol vol A B 0 +∞ × B × f x if x A 1 0 = x B if x A 1 0
12 ovif2 B if x A 1 0 = if x A B 1 B 0
13 simp3 A dom vol vol A B 0 +∞ B 0 +∞
14 elrege0 B 0 +∞ B 0 B
15 13 14 sylib A dom vol vol A B 0 +∞ B 0 B
16 15 simpld A dom vol vol A B 0 +∞ B
17 16 recnd A dom vol vol A B 0 +∞ B
18 17 mulid1d A dom vol vol A B 0 +∞ B 1 = B
19 17 mul01d A dom vol vol A B 0 +∞ B 0 = 0
20 18 19 ifeq12d A dom vol vol A B 0 +∞ if x A B 1 B 0 = if x A B 0
21 12 20 eqtrid A dom vol vol A B 0 +∞ B if x A 1 0 = if x A B 0
22 21 mpteq2dv A dom vol vol A B 0 +∞ x B if x A 1 0 = x if x A B 0
23 11 22 eqtrd A dom vol vol A B 0 +∞ × B × f x if x A 1 0 = x if x A B 0
24 eqid x if x A 1 0 = x if x A 1 0
25 24 i1f1 A dom vol vol A x if x A 1 0 dom 1
26 25 3adant3 A dom vol vol A B 0 +∞ x if x A 1 0 dom 1
27 26 16 i1fmulc A dom vol vol A B 0 +∞ × B × f x if x A 1 0 dom 1
28 23 27 eqeltrrd A dom vol vol A B 0 +∞ x if x A B 0 dom 1
29 15 simprd A dom vol vol A B 0 +∞ 0 B
30 0le0 0 0
31 breq2 B = if x A B 0 0 B 0 if x A B 0
32 breq2 0 = if x A B 0 0 0 0 if x A B 0
33 31 32 ifboth 0 B 0 0 0 if x A B 0
34 29 30 33 sylancl A dom vol vol A B 0 +∞ 0 if x A B 0
35 34 ralrimivw A dom vol vol A B 0 +∞ x 0 if x A B 0
36 ax-resscn
37 36 a1i A dom vol vol A B 0 +∞
38 16 adantr A dom vol vol A B 0 +∞ x B
39 ifcl B 0 if x A B 0
40 38 5 39 sylancl A dom vol vol A B 0 +∞ x if x A B 0
41 40 ralrimiva A dom vol vol A B 0 +∞ x if x A B 0
42 eqid x if x A B 0 = x if x A B 0
43 42 fnmpt x if x A B 0 x if x A B 0 Fn
44 41 43 syl A dom vol vol A B 0 +∞ x if x A B 0 Fn
45 37 44 0pledm A dom vol vol A B 0 +∞ 0 𝑝 f x if x A B 0 × 0 f x if x A B 0
46 5 a1i A dom vol vol A B 0 +∞ x 0
47 fconstmpt × 0 = x 0
48 47 a1i A dom vol vol A B 0 +∞ × 0 = x 0
49 eqidd A dom vol vol A B 0 +∞ x if x A B 0 = x if x A B 0
50 2 46 40 48 49 ofrfval2 A dom vol vol A B 0 +∞ × 0 f x if x A B 0 x 0 if x A B 0
51 45 50 bitrd A dom vol vol A B 0 +∞ 0 𝑝 f x if x A B 0 x 0 if x A B 0
52 35 51 mpbird A dom vol vol A B 0 +∞ 0 𝑝 f x if x A B 0
53 itg2itg1 x if x A B 0 dom 1 0 𝑝 f x if x A B 0 2 x if x A B 0 = 1 x if x A B 0
54 28 52 53 syl2anc A dom vol vol A B 0 +∞ 2 x if x A B 0 = 1 x if x A B 0
55 26 16 itg1mulc A dom vol vol A B 0 +∞ 1 × B × f x if x A 1 0 = B 1 x if x A 1 0
56 23 fveq2d A dom vol vol A B 0 +∞ 1 × B × f x if x A 1 0 = 1 x if x A B 0
57 24 itg11 A dom vol vol A 1 x if x A 1 0 = vol A
58 57 3adant3 A dom vol vol A B 0 +∞ 1 x if x A 1 0 = vol A
59 58 oveq2d A dom vol vol A B 0 +∞ B 1 x if x A 1 0 = B vol A
60 55 56 59 3eqtr3d A dom vol vol A B 0 +∞ 1 x if x A B 0 = B vol A
61 54 60 eqtrd A dom vol vol A B 0 +∞ 2 x if x A B 0 = B vol A