| Step |
Hyp |
Ref |
Expression |
| 1 |
|
i1f1.1 |
|
| 2 |
|
ovol0 |
|
| 3 |
|
0mbl |
|
| 4 |
|
mblvol |
|
| 5 |
3 4
|
ax-mp |
|
| 6 |
|
itg10 |
|
| 7 |
2 5 6
|
3eqtr4ri |
|
| 8 |
|
noel |
|
| 9 |
|
eleq2 |
|
| 10 |
8 9
|
mtbiri |
|
| 11 |
10
|
iffalsed |
|
| 12 |
11
|
mpteq2dv |
|
| 13 |
|
fconstmpt |
|
| 14 |
12 1 13
|
3eqtr4g |
|
| 15 |
14
|
fveq2d |
|
| 16 |
|
fveq2 |
|
| 17 |
7 15 16
|
3eqtr4a |
|
| 18 |
17
|
a1i |
|
| 19 |
|
n0 |
|
| 20 |
1
|
i1f1 |
|
| 21 |
20
|
adantr |
|
| 22 |
|
itg1val |
|
| 23 |
21 22
|
syl |
|
| 24 |
1
|
i1f1lem |
|
| 25 |
24
|
simpli |
|
| 26 |
|
frn |
|
| 27 |
25 26
|
ax-mp |
|
| 28 |
|
ssdif |
|
| 29 |
27 28
|
ax-mp |
|
| 30 |
|
difprsnss |
|
| 31 |
29 30
|
sstri |
|
| 32 |
31
|
a1i |
|
| 33 |
|
mblss |
|
| 34 |
33
|
adantr |
|
| 35 |
34
|
sselda |
|
| 36 |
|
eleq1w |
|
| 37 |
36
|
ifbid |
|
| 38 |
|
1ex |
|
| 39 |
|
c0ex |
|
| 40 |
38 39
|
ifex |
|
| 41 |
37 1 40
|
fvmpt |
|
| 42 |
35 41
|
syl |
|
| 43 |
|
iftrue |
|
| 44 |
43
|
adantl |
|
| 45 |
42 44
|
eqtrd |
|
| 46 |
|
ffn |
|
| 47 |
25 46
|
ax-mp |
|
| 48 |
|
fnfvelrn |
|
| 49 |
47 35 48
|
sylancr |
|
| 50 |
45 49
|
eqeltrrd |
|
| 51 |
|
ax-1ne0 |
|
| 52 |
|
eldifsn |
|
| 53 |
50 51 52
|
sylanblrc |
|
| 54 |
53
|
snssd |
|
| 55 |
32 54
|
eqssd |
|
| 56 |
55
|
sumeq1d |
|
| 57 |
|
1re |
|
| 58 |
24
|
simpri |
|
| 59 |
58
|
ad2antrr |
|
| 60 |
59
|
fveq2d |
|
| 61 |
60
|
oveq2d |
|
| 62 |
|
simplr |
|
| 63 |
62
|
recnd |
|
| 64 |
63
|
mullidd |
|
| 65 |
61 64
|
eqtrd |
|
| 66 |
65 63
|
eqeltrd |
|
| 67 |
|
id |
|
| 68 |
|
sneq |
|
| 69 |
68
|
imaeq2d |
|
| 70 |
69
|
fveq2d |
|
| 71 |
67 70
|
oveq12d |
|
| 72 |
71
|
sumsn |
|
| 73 |
57 66 72
|
sylancr |
|
| 74 |
73 65
|
eqtrd |
|
| 75 |
56 74
|
eqtrd |
|
| 76 |
23 75
|
eqtrd |
|
| 77 |
76
|
ex |
|
| 78 |
77
|
exlimdv |
|
| 79 |
19 78
|
biimtrid |
|
| 80 |
18 79
|
pm2.61dne |
|