| Step |
Hyp |
Ref |
Expression |
| 1 |
|
i1f1.1 |
|- F = ( x e. RR |-> if ( x e. A , 1 , 0 ) ) |
| 2 |
|
ovol0 |
|- ( vol* ` (/) ) = 0 |
| 3 |
|
0mbl |
|- (/) e. dom vol |
| 4 |
|
mblvol |
|- ( (/) e. dom vol -> ( vol ` (/) ) = ( vol* ` (/) ) ) |
| 5 |
3 4
|
ax-mp |
|- ( vol ` (/) ) = ( vol* ` (/) ) |
| 6 |
|
itg10 |
|- ( S.1 ` ( RR X. { 0 } ) ) = 0 |
| 7 |
2 5 6
|
3eqtr4ri |
|- ( S.1 ` ( RR X. { 0 } ) ) = ( vol ` (/) ) |
| 8 |
|
noel |
|- -. x e. (/) |
| 9 |
|
eleq2 |
|- ( A = (/) -> ( x e. A <-> x e. (/) ) ) |
| 10 |
8 9
|
mtbiri |
|- ( A = (/) -> -. x e. A ) |
| 11 |
10
|
iffalsed |
|- ( A = (/) -> if ( x e. A , 1 , 0 ) = 0 ) |
| 12 |
11
|
mpteq2dv |
|- ( A = (/) -> ( x e. RR |-> if ( x e. A , 1 , 0 ) ) = ( x e. RR |-> 0 ) ) |
| 13 |
|
fconstmpt |
|- ( RR X. { 0 } ) = ( x e. RR |-> 0 ) |
| 14 |
12 1 13
|
3eqtr4g |
|- ( A = (/) -> F = ( RR X. { 0 } ) ) |
| 15 |
14
|
fveq2d |
|- ( A = (/) -> ( S.1 ` F ) = ( S.1 ` ( RR X. { 0 } ) ) ) |
| 16 |
|
fveq2 |
|- ( A = (/) -> ( vol ` A ) = ( vol ` (/) ) ) |
| 17 |
7 15 16
|
3eqtr4a |
|- ( A = (/) -> ( S.1 ` F ) = ( vol ` A ) ) |
| 18 |
17
|
a1i |
|- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> ( A = (/) -> ( S.1 ` F ) = ( vol ` A ) ) ) |
| 19 |
|
n0 |
|- ( A =/= (/) <-> E. y y e. A ) |
| 20 |
1
|
i1f1 |
|- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> F e. dom S.1 ) |
| 21 |
20
|
adantr |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> F e. dom S.1 ) |
| 22 |
|
itg1val |
|- ( F e. dom S.1 -> ( S.1 ` F ) = sum_ z e. ( ran F \ { 0 } ) ( z x. ( vol ` ( `' F " { z } ) ) ) ) |
| 23 |
21 22
|
syl |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( S.1 ` F ) = sum_ z e. ( ran F \ { 0 } ) ( z x. ( vol ` ( `' F " { z } ) ) ) ) |
| 24 |
1
|
i1f1lem |
|- ( F : RR --> { 0 , 1 } /\ ( A e. dom vol -> ( `' F " { 1 } ) = A ) ) |
| 25 |
24
|
simpli |
|- F : RR --> { 0 , 1 } |
| 26 |
|
frn |
|- ( F : RR --> { 0 , 1 } -> ran F C_ { 0 , 1 } ) |
| 27 |
25 26
|
ax-mp |
|- ran F C_ { 0 , 1 } |
| 28 |
|
ssdif |
|- ( ran F C_ { 0 , 1 } -> ( ran F \ { 0 } ) C_ ( { 0 , 1 } \ { 0 } ) ) |
| 29 |
27 28
|
ax-mp |
|- ( ran F \ { 0 } ) C_ ( { 0 , 1 } \ { 0 } ) |
| 30 |
|
difprsnss |
|- ( { 0 , 1 } \ { 0 } ) C_ { 1 } |
| 31 |
29 30
|
sstri |
|- ( ran F \ { 0 } ) C_ { 1 } |
| 32 |
31
|
a1i |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( ran F \ { 0 } ) C_ { 1 } ) |
| 33 |
|
mblss |
|- ( A e. dom vol -> A C_ RR ) |
| 34 |
33
|
adantr |
|- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> A C_ RR ) |
| 35 |
34
|
sselda |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> y e. RR ) |
| 36 |
|
eleq1w |
|- ( x = y -> ( x e. A <-> y e. A ) ) |
| 37 |
36
|
ifbid |
|- ( x = y -> if ( x e. A , 1 , 0 ) = if ( y e. A , 1 , 0 ) ) |
| 38 |
|
1ex |
|- 1 e. _V |
| 39 |
|
c0ex |
|- 0 e. _V |
| 40 |
38 39
|
ifex |
|- if ( y e. A , 1 , 0 ) e. _V |
| 41 |
37 1 40
|
fvmpt |
|- ( y e. RR -> ( F ` y ) = if ( y e. A , 1 , 0 ) ) |
| 42 |
35 41
|
syl |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( F ` y ) = if ( y e. A , 1 , 0 ) ) |
| 43 |
|
iftrue |
|- ( y e. A -> if ( y e. A , 1 , 0 ) = 1 ) |
| 44 |
43
|
adantl |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> if ( y e. A , 1 , 0 ) = 1 ) |
| 45 |
42 44
|
eqtrd |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( F ` y ) = 1 ) |
| 46 |
|
ffn |
|- ( F : RR --> { 0 , 1 } -> F Fn RR ) |
| 47 |
25 46
|
ax-mp |
|- F Fn RR |
| 48 |
|
fnfvelrn |
|- ( ( F Fn RR /\ y e. RR ) -> ( F ` y ) e. ran F ) |
| 49 |
47 35 48
|
sylancr |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( F ` y ) e. ran F ) |
| 50 |
45 49
|
eqeltrrd |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> 1 e. ran F ) |
| 51 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 52 |
|
eldifsn |
|- ( 1 e. ( ran F \ { 0 } ) <-> ( 1 e. ran F /\ 1 =/= 0 ) ) |
| 53 |
50 51 52
|
sylanblrc |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> 1 e. ( ran F \ { 0 } ) ) |
| 54 |
53
|
snssd |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> { 1 } C_ ( ran F \ { 0 } ) ) |
| 55 |
32 54
|
eqssd |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( ran F \ { 0 } ) = { 1 } ) |
| 56 |
55
|
sumeq1d |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> sum_ z e. ( ran F \ { 0 } ) ( z x. ( vol ` ( `' F " { z } ) ) ) = sum_ z e. { 1 } ( z x. ( vol ` ( `' F " { z } ) ) ) ) |
| 57 |
|
1re |
|- 1 e. RR |
| 58 |
24
|
simpri |
|- ( A e. dom vol -> ( `' F " { 1 } ) = A ) |
| 59 |
58
|
ad2antrr |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( `' F " { 1 } ) = A ) |
| 60 |
59
|
fveq2d |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( vol ` ( `' F " { 1 } ) ) = ( vol ` A ) ) |
| 61 |
60
|
oveq2d |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( 1 x. ( vol ` ( `' F " { 1 } ) ) ) = ( 1 x. ( vol ` A ) ) ) |
| 62 |
|
simplr |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( vol ` A ) e. RR ) |
| 63 |
62
|
recnd |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( vol ` A ) e. CC ) |
| 64 |
63
|
mullidd |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( 1 x. ( vol ` A ) ) = ( vol ` A ) ) |
| 65 |
61 64
|
eqtrd |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( 1 x. ( vol ` ( `' F " { 1 } ) ) ) = ( vol ` A ) ) |
| 66 |
65 63
|
eqeltrd |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( 1 x. ( vol ` ( `' F " { 1 } ) ) ) e. CC ) |
| 67 |
|
id |
|- ( z = 1 -> z = 1 ) |
| 68 |
|
sneq |
|- ( z = 1 -> { z } = { 1 } ) |
| 69 |
68
|
imaeq2d |
|- ( z = 1 -> ( `' F " { z } ) = ( `' F " { 1 } ) ) |
| 70 |
69
|
fveq2d |
|- ( z = 1 -> ( vol ` ( `' F " { z } ) ) = ( vol ` ( `' F " { 1 } ) ) ) |
| 71 |
67 70
|
oveq12d |
|- ( z = 1 -> ( z x. ( vol ` ( `' F " { z } ) ) ) = ( 1 x. ( vol ` ( `' F " { 1 } ) ) ) ) |
| 72 |
71
|
sumsn |
|- ( ( 1 e. RR /\ ( 1 x. ( vol ` ( `' F " { 1 } ) ) ) e. CC ) -> sum_ z e. { 1 } ( z x. ( vol ` ( `' F " { z } ) ) ) = ( 1 x. ( vol ` ( `' F " { 1 } ) ) ) ) |
| 73 |
57 66 72
|
sylancr |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> sum_ z e. { 1 } ( z x. ( vol ` ( `' F " { z } ) ) ) = ( 1 x. ( vol ` ( `' F " { 1 } ) ) ) ) |
| 74 |
73 65
|
eqtrd |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> sum_ z e. { 1 } ( z x. ( vol ` ( `' F " { z } ) ) ) = ( vol ` A ) ) |
| 75 |
56 74
|
eqtrd |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> sum_ z e. ( ran F \ { 0 } ) ( z x. ( vol ` ( `' F " { z } ) ) ) = ( vol ` A ) ) |
| 76 |
23 75
|
eqtrd |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( S.1 ` F ) = ( vol ` A ) ) |
| 77 |
76
|
ex |
|- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> ( y e. A -> ( S.1 ` F ) = ( vol ` A ) ) ) |
| 78 |
77
|
exlimdv |
|- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> ( E. y y e. A -> ( S.1 ` F ) = ( vol ` A ) ) ) |
| 79 |
19 78
|
biimtrid |
|- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> ( A =/= (/) -> ( S.1 ` F ) = ( vol ` A ) ) ) |
| 80 |
18 79
|
pm2.61dne |
|- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> ( S.1 ` F ) = ( vol ` A ) ) |