| Step | Hyp | Ref | Expression | 
						
							| 1 |  | i1f1.1 | ⊢ 𝐹  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) ) | 
						
							| 2 |  | ovol0 | ⊢ ( vol* ‘ ∅ )  =  0 | 
						
							| 3 |  | 0mbl | ⊢ ∅  ∈  dom  vol | 
						
							| 4 |  | mblvol | ⊢ ( ∅  ∈  dom  vol  →  ( vol ‘ ∅ )  =  ( vol* ‘ ∅ ) ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ ( vol ‘ ∅ )  =  ( vol* ‘ ∅ ) | 
						
							| 6 |  | itg10 | ⊢ ( ∫1 ‘ ( ℝ  ×  { 0 } ) )  =  0 | 
						
							| 7 | 2 5 6 | 3eqtr4ri | ⊢ ( ∫1 ‘ ( ℝ  ×  { 0 } ) )  =  ( vol ‘ ∅ ) | 
						
							| 8 |  | noel | ⊢ ¬  𝑥  ∈  ∅ | 
						
							| 9 |  | eleq2 | ⊢ ( 𝐴  =  ∅  →  ( 𝑥  ∈  𝐴  ↔  𝑥  ∈  ∅ ) ) | 
						
							| 10 | 8 9 | mtbiri | ⊢ ( 𝐴  =  ∅  →  ¬  𝑥  ∈  𝐴 ) | 
						
							| 11 | 10 | iffalsed | ⊢ ( 𝐴  =  ∅  →  if ( 𝑥  ∈  𝐴 ,  1 ,  0 )  =  0 ) | 
						
							| 12 | 11 | mpteq2dv | ⊢ ( 𝐴  =  ∅  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  0 ) ) | 
						
							| 13 |  | fconstmpt | ⊢ ( ℝ  ×  { 0 } )  =  ( 𝑥  ∈  ℝ  ↦  0 ) | 
						
							| 14 | 12 1 13 | 3eqtr4g | ⊢ ( 𝐴  =  ∅  →  𝐹  =  ( ℝ  ×  { 0 } ) ) | 
						
							| 15 | 14 | fveq2d | ⊢ ( 𝐴  =  ∅  →  ( ∫1 ‘ 𝐹 )  =  ( ∫1 ‘ ( ℝ  ×  { 0 } ) ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝐴  =  ∅  →  ( vol ‘ 𝐴 )  =  ( vol ‘ ∅ ) ) | 
						
							| 17 | 7 15 16 | 3eqtr4a | ⊢ ( 𝐴  =  ∅  →  ( ∫1 ‘ 𝐹 )  =  ( vol ‘ 𝐴 ) ) | 
						
							| 18 | 17 | a1i | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  →  ( 𝐴  =  ∅  →  ( ∫1 ‘ 𝐹 )  =  ( vol ‘ 𝐴 ) ) ) | 
						
							| 19 |  | n0 | ⊢ ( 𝐴  ≠  ∅  ↔  ∃ 𝑦 𝑦  ∈  𝐴 ) | 
						
							| 20 | 1 | i1f1 | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  →  𝐹  ∈  dom  ∫1 ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  →  𝐹  ∈  dom  ∫1 ) | 
						
							| 22 |  | itg1val | ⊢ ( 𝐹  ∈  dom  ∫1  →  ( ∫1 ‘ 𝐹 )  =  Σ 𝑧  ∈  ( ran  𝐹  ∖  { 0 } ) ( 𝑧  ·  ( vol ‘ ( ◡ 𝐹  “  { 𝑧 } ) ) ) ) | 
						
							| 23 | 21 22 | syl | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  →  ( ∫1 ‘ 𝐹 )  =  Σ 𝑧  ∈  ( ran  𝐹  ∖  { 0 } ) ( 𝑧  ·  ( vol ‘ ( ◡ 𝐹  “  { 𝑧 } ) ) ) ) | 
						
							| 24 | 1 | i1f1lem | ⊢ ( 𝐹 : ℝ ⟶ { 0 ,  1 }  ∧  ( 𝐴  ∈  dom  vol  →  ( ◡ 𝐹  “  { 1 } )  =  𝐴 ) ) | 
						
							| 25 | 24 | simpli | ⊢ 𝐹 : ℝ ⟶ { 0 ,  1 } | 
						
							| 26 |  | frn | ⊢ ( 𝐹 : ℝ ⟶ { 0 ,  1 }  →  ran  𝐹  ⊆  { 0 ,  1 } ) | 
						
							| 27 | 25 26 | ax-mp | ⊢ ran  𝐹  ⊆  { 0 ,  1 } | 
						
							| 28 |  | ssdif | ⊢ ( ran  𝐹  ⊆  { 0 ,  1 }  →  ( ran  𝐹  ∖  { 0 } )  ⊆  ( { 0 ,  1 }  ∖  { 0 } ) ) | 
						
							| 29 | 27 28 | ax-mp | ⊢ ( ran  𝐹  ∖  { 0 } )  ⊆  ( { 0 ,  1 }  ∖  { 0 } ) | 
						
							| 30 |  | difprsnss | ⊢ ( { 0 ,  1 }  ∖  { 0 } )  ⊆  { 1 } | 
						
							| 31 | 29 30 | sstri | ⊢ ( ran  𝐹  ∖  { 0 } )  ⊆  { 1 } | 
						
							| 32 | 31 | a1i | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  →  ( ran  𝐹  ∖  { 0 } )  ⊆  { 1 } ) | 
						
							| 33 |  | mblss | ⊢ ( 𝐴  ∈  dom  vol  →  𝐴  ⊆  ℝ ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  →  𝐴  ⊆  ℝ ) | 
						
							| 35 | 34 | sselda | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  ℝ ) | 
						
							| 36 |  | eleq1w | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝐴  ↔  𝑦  ∈  𝐴 ) ) | 
						
							| 37 | 36 | ifbid | ⊢ ( 𝑥  =  𝑦  →  if ( 𝑥  ∈  𝐴 ,  1 ,  0 )  =  if ( 𝑦  ∈  𝐴 ,  1 ,  0 ) ) | 
						
							| 38 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 39 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 40 | 38 39 | ifex | ⊢ if ( 𝑦  ∈  𝐴 ,  1 ,  0 )  ∈  V | 
						
							| 41 | 37 1 40 | fvmpt | ⊢ ( 𝑦  ∈  ℝ  →  ( 𝐹 ‘ 𝑦 )  =  if ( 𝑦  ∈  𝐴 ,  1 ,  0 ) ) | 
						
							| 42 | 35 41 | syl | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑦 )  =  if ( 𝑦  ∈  𝐴 ,  1 ,  0 ) ) | 
						
							| 43 |  | iftrue | ⊢ ( 𝑦  ∈  𝐴  →  if ( 𝑦  ∈  𝐴 ,  1 ,  0 )  =  1 ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  →  if ( 𝑦  ∈  𝐴 ,  1 ,  0 )  =  1 ) | 
						
							| 45 | 42 44 | eqtrd | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑦 )  =  1 ) | 
						
							| 46 |  | ffn | ⊢ ( 𝐹 : ℝ ⟶ { 0 ,  1 }  →  𝐹  Fn  ℝ ) | 
						
							| 47 | 25 46 | ax-mp | ⊢ 𝐹  Fn  ℝ | 
						
							| 48 |  | fnfvelrn | ⊢ ( ( 𝐹  Fn  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ 𝑦 )  ∈  ran  𝐹 ) | 
						
							| 49 | 47 35 48 | sylancr | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ran  𝐹 ) | 
						
							| 50 | 45 49 | eqeltrrd | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  →  1  ∈  ran  𝐹 ) | 
						
							| 51 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 52 |  | eldifsn | ⊢ ( 1  ∈  ( ran  𝐹  ∖  { 0 } )  ↔  ( 1  ∈  ran  𝐹  ∧  1  ≠  0 ) ) | 
						
							| 53 | 50 51 52 | sylanblrc | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  →  1  ∈  ( ran  𝐹  ∖  { 0 } ) ) | 
						
							| 54 | 53 | snssd | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  →  { 1 }  ⊆  ( ran  𝐹  ∖  { 0 } ) ) | 
						
							| 55 | 32 54 | eqssd | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  →  ( ran  𝐹  ∖  { 0 } )  =  { 1 } ) | 
						
							| 56 | 55 | sumeq1d | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  →  Σ 𝑧  ∈  ( ran  𝐹  ∖  { 0 } ) ( 𝑧  ·  ( vol ‘ ( ◡ 𝐹  “  { 𝑧 } ) ) )  =  Σ 𝑧  ∈  { 1 } ( 𝑧  ·  ( vol ‘ ( ◡ 𝐹  “  { 𝑧 } ) ) ) ) | 
						
							| 57 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 58 | 24 | simpri | ⊢ ( 𝐴  ∈  dom  vol  →  ( ◡ 𝐹  “  { 1 } )  =  𝐴 ) | 
						
							| 59 | 58 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  →  ( ◡ 𝐹  “  { 1 } )  =  𝐴 ) | 
						
							| 60 | 59 | fveq2d | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  →  ( vol ‘ ( ◡ 𝐹  “  { 1 } ) )  =  ( vol ‘ 𝐴 ) ) | 
						
							| 61 | 60 | oveq2d | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  →  ( 1  ·  ( vol ‘ ( ◡ 𝐹  “  { 1 } ) ) )  =  ( 1  ·  ( vol ‘ 𝐴 ) ) ) | 
						
							| 62 |  | simplr | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  →  ( vol ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 63 | 62 | recnd | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  →  ( vol ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 64 | 63 | mullidd | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  →  ( 1  ·  ( vol ‘ 𝐴 ) )  =  ( vol ‘ 𝐴 ) ) | 
						
							| 65 | 61 64 | eqtrd | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  →  ( 1  ·  ( vol ‘ ( ◡ 𝐹  “  { 1 } ) ) )  =  ( vol ‘ 𝐴 ) ) | 
						
							| 66 | 65 63 | eqeltrd | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  →  ( 1  ·  ( vol ‘ ( ◡ 𝐹  “  { 1 } ) ) )  ∈  ℂ ) | 
						
							| 67 |  | id | ⊢ ( 𝑧  =  1  →  𝑧  =  1 ) | 
						
							| 68 |  | sneq | ⊢ ( 𝑧  =  1  →  { 𝑧 }  =  { 1 } ) | 
						
							| 69 | 68 | imaeq2d | ⊢ ( 𝑧  =  1  →  ( ◡ 𝐹  “  { 𝑧 } )  =  ( ◡ 𝐹  “  { 1 } ) ) | 
						
							| 70 | 69 | fveq2d | ⊢ ( 𝑧  =  1  →  ( vol ‘ ( ◡ 𝐹  “  { 𝑧 } ) )  =  ( vol ‘ ( ◡ 𝐹  “  { 1 } ) ) ) | 
						
							| 71 | 67 70 | oveq12d | ⊢ ( 𝑧  =  1  →  ( 𝑧  ·  ( vol ‘ ( ◡ 𝐹  “  { 𝑧 } ) ) )  =  ( 1  ·  ( vol ‘ ( ◡ 𝐹  “  { 1 } ) ) ) ) | 
						
							| 72 | 71 | sumsn | ⊢ ( ( 1  ∈  ℝ  ∧  ( 1  ·  ( vol ‘ ( ◡ 𝐹  “  { 1 } ) ) )  ∈  ℂ )  →  Σ 𝑧  ∈  { 1 } ( 𝑧  ·  ( vol ‘ ( ◡ 𝐹  “  { 𝑧 } ) ) )  =  ( 1  ·  ( vol ‘ ( ◡ 𝐹  “  { 1 } ) ) ) ) | 
						
							| 73 | 57 66 72 | sylancr | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  →  Σ 𝑧  ∈  { 1 } ( 𝑧  ·  ( vol ‘ ( ◡ 𝐹  “  { 𝑧 } ) ) )  =  ( 1  ·  ( vol ‘ ( ◡ 𝐹  “  { 1 } ) ) ) ) | 
						
							| 74 | 73 65 | eqtrd | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  →  Σ 𝑧  ∈  { 1 } ( 𝑧  ·  ( vol ‘ ( ◡ 𝐹  “  { 𝑧 } ) ) )  =  ( vol ‘ 𝐴 ) ) | 
						
							| 75 | 56 74 | eqtrd | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  →  Σ 𝑧  ∈  ( ran  𝐹  ∖  { 0 } ) ( 𝑧  ·  ( vol ‘ ( ◡ 𝐹  “  { 𝑧 } ) ) )  =  ( vol ‘ 𝐴 ) ) | 
						
							| 76 | 23 75 | eqtrd | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  →  ( ∫1 ‘ 𝐹 )  =  ( vol ‘ 𝐴 ) ) | 
						
							| 77 | 76 | ex | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  →  ( 𝑦  ∈  𝐴  →  ( ∫1 ‘ 𝐹 )  =  ( vol ‘ 𝐴 ) ) ) | 
						
							| 78 | 77 | exlimdv | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  →  ( ∃ 𝑦 𝑦  ∈  𝐴  →  ( ∫1 ‘ 𝐹 )  =  ( vol ‘ 𝐴 ) ) ) | 
						
							| 79 | 19 78 | biimtrid | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  →  ( 𝐴  ≠  ∅  →  ( ∫1 ‘ 𝐹 )  =  ( vol ‘ 𝐴 ) ) ) | 
						
							| 80 | 18 79 | pm2.61dne | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  →  ( ∫1 ‘ 𝐹 )  =  ( vol ‘ 𝐴 ) ) |