| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
⊢ 𝑥 ∈ V |
| 2 |
1
|
elpr |
⊢ ( 𝑥 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) |
| 3 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) |
| 4 |
3
|
notbii |
⊢ ( ¬ 𝑥 ∈ { 𝐴 } ↔ ¬ 𝑥 = 𝐴 ) |
| 5 |
|
biorf |
⊢ ( ¬ 𝑥 = 𝐴 → ( 𝑥 = 𝐵 ↔ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) ) |
| 6 |
5
|
biimparc |
⊢ ( ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ¬ 𝑥 = 𝐴 ) → 𝑥 = 𝐵 ) |
| 7 |
2 4 6
|
syl2anb |
⊢ ( ( 𝑥 ∈ { 𝐴 , 𝐵 } ∧ ¬ 𝑥 ∈ { 𝐴 } ) → 𝑥 = 𝐵 ) |
| 8 |
|
eldif |
⊢ ( 𝑥 ∈ ( { 𝐴 , 𝐵 } ∖ { 𝐴 } ) ↔ ( 𝑥 ∈ { 𝐴 , 𝐵 } ∧ ¬ 𝑥 ∈ { 𝐴 } ) ) |
| 9 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝐵 } ↔ 𝑥 = 𝐵 ) |
| 10 |
7 8 9
|
3imtr4i |
⊢ ( 𝑥 ∈ ( { 𝐴 , 𝐵 } ∖ { 𝐴 } ) → 𝑥 ∈ { 𝐵 } ) |
| 11 |
10
|
ssriv |
⊢ ( { 𝐴 , 𝐵 } ∖ { 𝐴 } ) ⊆ { 𝐵 } |