Description: Lemma for i1f1 and itg11 . (Contributed by Mario Carneiro, 18-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | i1f1.1 | |
|
Assertion | i1f1lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | i1f1.1 | |
|
2 | 1ex | |
|
3 | 2 | prid2 | |
4 | c0ex | |
|
5 | 4 | prid1 | |
6 | 3 5 | ifcli | |
7 | 6 | rgenw | |
8 | 1 | fmpt | |
9 | 7 8 | mpbi | |
10 | 6 | a1i | |
11 | 10 1 | fmptd | |
12 | ffn | |
|
13 | elpreima | |
|
14 | 11 12 13 | 3syl | |
15 | fvex | |
|
16 | 15 | elsn | |
17 | eleq1w | |
|
18 | 17 | ifbid | |
19 | 2 4 | ifex | |
20 | 18 1 19 | fvmpt | |
21 | 20 | eqeq1d | |
22 | 0ne1 | |
|
23 | iffalse | |
|
24 | 23 | eqeq1d | |
25 | 24 | necon3bbid | |
26 | 22 25 | mpbiri | |
27 | 26 | con4i | |
28 | iftrue | |
|
29 | 27 28 | impbii | |
30 | 21 29 | bitrdi | |
31 | 16 30 | bitrid | |
32 | 31 | pm5.32i | |
33 | 14 32 | bitrdi | |
34 | mblss | |
|
35 | 34 | sseld | |
36 | 35 | pm4.71rd | |
37 | 33 36 | bitr4d | |
38 | 37 | eqrdv | |
39 | 9 38 | pm3.2i | |