Metamath Proof Explorer


Theorem i1f1lem

Description: Lemma for i1f1 and itg11 . (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Hypothesis i1f1.1 F=xifxA10
Assertion i1f1lem F:01AdomvolF-11=A

Proof

Step Hyp Ref Expression
1 i1f1.1 F=xifxA10
2 1ex 1V
3 2 prid2 101
4 c0ex 0V
5 4 prid1 001
6 3 5 ifcli ifxA1001
7 6 rgenw xifxA1001
8 1 fmpt xifxA1001F:01
9 7 8 mpbi F:01
10 6 a1i AdomvolxifxA1001
11 10 1 fmptd AdomvolF:01
12 ffn F:01FFn
13 elpreima FFnyF-11yFy1
14 11 12 13 3syl AdomvolyF-11yFy1
15 fvex FyV
16 15 elsn Fy1Fy=1
17 eleq1w x=yxAyA
18 17 ifbid x=yifxA10=ifyA10
19 2 4 ifex ifyA10V
20 18 1 19 fvmpt yFy=ifyA10
21 20 eqeq1d yFy=1ifyA10=1
22 0ne1 01
23 iffalse ¬yAifyA10=0
24 23 eqeq1d ¬yAifyA10=10=1
25 24 necon3bbid ¬yA¬ifyA10=101
26 22 25 mpbiri ¬yA¬ifyA10=1
27 26 con4i ifyA10=1yA
28 iftrue yAifyA10=1
29 27 28 impbii ifyA10=1yA
30 21 29 bitrdi yFy=1yA
31 16 30 bitrid yFy1yA
32 31 pm5.32i yFy1yyA
33 14 32 bitrdi AdomvolyF-11yyA
34 mblss AdomvolA
35 34 sseld AdomvolyAy
36 35 pm4.71rd AdomvolyAyyA
37 33 36 bitr4d AdomvolyF-11yA
38 37 eqrdv AdomvolF-11=A
39 9 38 pm3.2i F:01AdomvolF-11=A