Metamath Proof Explorer


Theorem mbfconst

Description: A constant function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Assertion mbfconst AdomvolBA×BMblFn

Proof

Step Hyp Ref Expression
1 simplr AdomvolBxAB
2 fconstmpt A×B=xAB
3 1 2 fmptd AdomvolBA×B:A
4 mblss AdomvolA
5 4 adantr AdomvolBA
6 cnex V
7 reex V
8 elpm2r VVA×B:AAA×B𝑝𝑚
9 6 7 8 mpanl12 A×B:AAA×B𝑝𝑚
10 3 5 9 syl2anc AdomvolBA×B𝑝𝑚
11 2 a1i AdomvolBA×B=xAB
12 ref :
13 12 a1i AdomvolB:
14 13 feqmptd AdomvolB=yy
15 fveq2 y=By=B
16 1 11 14 15 fmptco AdomvolBA×B=xAB
17 fconstmpt A×B=xAB
18 16 17 eqtr4di AdomvolBA×B=A×B
19 18 cnveqd AdomvolBA×B-1=A×B-1
20 19 imaeq1d AdomvolBA×B-1y=A×B-1y
21 recl BB
22 mbfconstlem AdomvolBA×B-1ydomvol
23 21 22 sylan2 AdomvolBA×B-1ydomvol
24 20 23 eqeltrd AdomvolBA×B-1ydomvol
25 imf :
26 25 a1i AdomvolB:
27 26 feqmptd AdomvolB=yy
28 fveq2 y=By=B
29 1 11 27 28 fmptco AdomvolBA×B=xAB
30 fconstmpt A×B=xAB
31 29 30 eqtr4di AdomvolBA×B=A×B
32 31 cnveqd AdomvolBA×B-1=A×B-1
33 32 imaeq1d AdomvolBA×B-1y=A×B-1y
34 imcl BB
35 mbfconstlem AdomvolBA×B-1ydomvol
36 34 35 sylan2 AdomvolBA×B-1ydomvol
37 33 36 eqeltrd AdomvolBA×B-1ydomvol
38 24 37 jca AdomvolBA×B-1ydomvolA×B-1ydomvol
39 38 ralrimivw AdomvolByran.A×B-1ydomvolA×B-1ydomvol
40 ismbf1 A×BMblFnA×B𝑝𝑚yran.A×B-1ydomvolA×B-1ydomvol
41 10 39 40 sylanbrc AdomvolBA×BMblFn