Metamath Proof Explorer


Theorem mbf0

Description: The empty function is measurable. (Contributed by Brendan Leahy, 28-Mar-2018)

Ref Expression
Assertion mbf0 MblFn

Proof

Step Hyp Ref Expression
1 0xp ×1=
2 0mbl domvol
3 ax-1cn 1
4 mbfconst domvol1×1MblFn
5 2 3 4 mp2an ×1MblFn
6 1 5 eqeltrri MblFn