Metamath Proof Explorer


Theorem mbfid

Description: The identity function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Assertion mbfid AdomvolIAMblFn

Proof

Step Hyp Ref Expression
1 cnvresima IA-1x=I-1xA
2 cnvi I-1=I
3 2 imaeq1i I-1x=Ix
4 imai Ix=x
5 3 4 eqtri I-1x=x
6 5 ineq1i I-1xA=xA
7 1 6 eqtri IA-1x=xA
8 ioof .:*×*𝒫
9 ffn .:*×*𝒫.Fn*×*
10 ovelrn .Fn*×*xran.y*z*x=yz
11 8 9 10 mp2b xran.y*z*x=yz
12 id x=yzx=yz
13 ioombl yzdomvol
14 12 13 eqeltrdi x=yzxdomvol
15 14 a1i y*z*x=yzxdomvol
16 15 rexlimivv y*z*x=yzxdomvol
17 11 16 sylbi xran.xdomvol
18 id AdomvolAdomvol
19 inmbl xdomvolAdomvolxAdomvol
20 17 18 19 syl2anr Adomvolxran.xAdomvol
21 7 20 eqeltrid Adomvolxran.IA-1xdomvol
22 21 ralrimiva Adomvolxran.IA-1xdomvol
23 f1oi IA:A1-1 ontoA
24 f1of IA:A1-1 ontoAIA:AA
25 23 24 ax-mp IA:AA
26 mblss AdomvolA
27 fss IA:AAAIA:A
28 25 26 27 sylancr AdomvolIA:A
29 ismbf IA:AIAMblFnxran.IA-1xdomvol
30 28 29 syl AdomvolIAMblFnxran.IA-1xdomvol
31 22 30 mpbird AdomvolIAMblFn