Metamath Proof Explorer


Theorem mbfid

Description: The identity function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Assertion mbfid A dom vol I A MblFn

Proof

Step Hyp Ref Expression
1 cnvresima I A -1 x = I -1 x A
2 cnvi I -1 = I
3 2 imaeq1i I -1 x = I x
4 imai I x = x
5 3 4 eqtri I -1 x = x
6 5 ineq1i I -1 x A = x A
7 1 6 eqtri I A -1 x = x A
8 ioof . : * × * 𝒫
9 ffn . : * × * 𝒫 . Fn * × *
10 ovelrn . Fn * × * x ran . y * z * x = y z
11 8 9 10 mp2b x ran . y * z * x = y z
12 id x = y z x = y z
13 ioombl y z dom vol
14 12 13 eqeltrdi x = y z x dom vol
15 14 a1i y * z * x = y z x dom vol
16 15 rexlimivv y * z * x = y z x dom vol
17 11 16 sylbi x ran . x dom vol
18 id A dom vol A dom vol
19 inmbl x dom vol A dom vol x A dom vol
20 17 18 19 syl2anr A dom vol x ran . x A dom vol
21 7 20 eqeltrid A dom vol x ran . I A -1 x dom vol
22 21 ralrimiva A dom vol x ran . I A -1 x dom vol
23 f1oi I A : A 1-1 onto A
24 f1of I A : A 1-1 onto A I A : A A
25 23 24 ax-mp I A : A A
26 mblss A dom vol A
27 fss I A : A A A I A : A
28 25 26 27 sylancr A dom vol I A : A
29 ismbf I A : A I A MblFn x ran . I A -1 x dom vol
30 28 29 syl A dom vol I A MblFn x ran . I A -1 x dom vol
31 22 30 mpbird A dom vol I A MblFn