Metamath Proof Explorer


Theorem ioombl

Description: An open real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014)

Ref Expression
Assertion ioombl ABdomvol

Proof

Step Hyp Ref Expression
1 snunioo A*B*A<BAAB=AB
2 1 3expa A*B*A<BAAB=AB
3 2 adantrr A*B*A<B−∞<AAAB=AB
4 lbico1 A*B*A<BAAB
5 4 3expa A*B*A<BAAB
6 5 adantrr A*B*A<B−∞<AAAB
7 6 snssd A*B*A<B−∞<AAAB
8 iccid A*AA=A
9 8 ad2antrr A*B*A<B−∞<AAA=A
10 9 ineq1d A*B*A<B−∞<AAAAB=AAB
11 simpll A*B*A<B−∞<AA*
12 simplr A*B*A<B−∞<AB*
13 df-icc .=x*,y*z*|xzzy
14 df-ioo .=x*,y*z*|x<zz<y
15 xrltnle A*w*A<w¬wA
16 13 14 15 ixxdisj A*A*B*AAAB=
17 11 11 12 16 syl3anc A*B*A<B−∞<AAAAB=
18 10 17 eqtr3d A*B*A<B−∞<AAAB=
19 uneqdifeq AABAAB=AAB=ABABA=AB
20 7 18 19 syl2anc A*B*A<B−∞<AAAB=ABABA=AB
21 3 20 mpbid A*B*A<B−∞<AABA=AB
22 mnfxr −∞*
23 22 a1i A*B*A<B−∞<A−∞*
24 simprr A*B*A<B−∞<A−∞<A
25 simprl A*B*A<B−∞<AA<B
26 xrre2 −∞*A*B*−∞<AA<BA
27 23 11 12 24 25 26 syl32anc A*B*A<B−∞<AA
28 icombl AB*ABdomvol
29 27 12 28 syl2anc A*B*A<B−∞<AABdomvol
30 27 snssd A*B*A<B−∞<AA
31 ovolsn Avol*A=0
32 27 31 syl A*B*A<B−∞<Avol*A=0
33 nulmbl Avol*A=0Adomvol
34 30 32 33 syl2anc A*B*A<B−∞<AAdomvol
35 difmbl ABdomvolAdomvolABAdomvol
36 29 34 35 syl2anc A*B*A<B−∞<AABAdomvol
37 21 36 eqeltrrd A*B*A<B−∞<AABdomvol
38 37 expr A*B*A<B−∞<AABdomvol
39 uncom B+∞−∞B=−∞BB+∞
40 22 a1i A*B*A<B−∞*
41 simplr A*B*A<BB*
42 pnfxr +∞*
43 42 a1i A*B*A<B+∞*
44 simpll A*B*A<BA*
45 mnfle A*−∞A
46 45 ad2antrr A*B*A<B−∞A
47 simpr A*B*A<BA<B
48 40 44 41 46 47 xrlelttrd A*B*A<B−∞<B
49 pnfge B*B+∞
50 41 49 syl A*B*A<BB+∞
51 df-ico .=x*,y*z*|xzz<y
52 xrlenlt B*w*Bw¬w<B
53 xrltletr w*B*+∞*w<BB+∞w<+∞
54 xrltletr −∞*B*w*−∞<BBw−∞<w
55 14 51 52 14 53 54 ixxun −∞*B*+∞*−∞<BB+∞−∞BB+∞=−∞+∞
56 40 41 43 48 50 55 syl32anc A*B*A<B−∞BB+∞=−∞+∞
57 39 56 eqtrid A*B*A<BB+∞−∞B=−∞+∞
58 ioomax −∞+∞=
59 57 58 eqtrdi A*B*A<BB+∞−∞B=
60 ssun1 B+∞B+∞−∞B
61 60 59 sseqtrid A*B*A<BB+∞
62 incom B+∞−∞B=−∞BB+∞
63 14 51 52 ixxdisj −∞*B*+∞*−∞BB+∞=
64 40 41 43 63 syl3anc A*B*A<B−∞BB+∞=
65 62 64 eqtrid A*B*A<BB+∞−∞B=
66 uneqdifeq B+∞B+∞−∞B=B+∞−∞B=B+∞=−∞B
67 61 65 66 syl2anc A*B*A<BB+∞−∞B=B+∞=−∞B
68 59 67 mpbid A*B*A<BB+∞=−∞B
69 rembl domvol
70 xrleloe B*+∞*B+∞B<+∞B=+∞
71 41 42 70 sylancl A*B*A<BB+∞B<+∞B=+∞
72 50 71 mpbid A*B*A<BB<+∞B=+∞
73 xrre2 A*B*+∞*A<BB<+∞B
74 73 expr A*B*+∞*A<BB<+∞B
75 42 74 mp3anl3 A*B*A<BB<+∞B
76 75 orim1d A*B*A<BB<+∞B=+∞BB=+∞
77 72 76 mpd A*B*A<BBB=+∞
78 icombl1 BB+∞domvol
79 oveq1 B=+∞B+∞=+∞+∞
80 pnfge +∞*+∞+∞
81 42 80 ax-mp +∞+∞
82 ico0 +∞*+∞*+∞+∞=+∞+∞
83 42 42 82 mp2an +∞+∞=+∞+∞
84 81 83 mpbir +∞+∞=
85 79 84 eqtrdi B=+∞B+∞=
86 0mbl domvol
87 85 86 eqeltrdi B=+∞B+∞domvol
88 78 87 jaoi BB=+∞B+∞domvol
89 77 88 syl A*B*A<BB+∞domvol
90 difmbl domvolB+∞domvolB+∞domvol
91 69 89 90 sylancr A*B*A<BB+∞domvol
92 68 91 eqeltrrd A*B*A<B−∞Bdomvol
93 oveq1 −∞=A−∞B=AB
94 93 eleq1d −∞=A−∞BdomvolABdomvol
95 92 94 syl5ibcom A*B*A<B−∞=AABdomvol
96 xrleloe −∞*A*−∞A−∞<A−∞=A
97 22 44 96 sylancr A*B*A<B−∞A−∞<A−∞=A
98 46 97 mpbid A*B*A<B−∞<A−∞=A
99 38 95 98 mpjaod A*B*A<BABdomvol
100 ioo0 A*B*AB=BA
101 xrlenlt B*A*BA¬A<B
102 101 ancoms A*B*BA¬A<B
103 100 102 bitrd A*B*AB=¬A<B
104 103 biimpar A*B*¬A<BAB=
105 104 86 eqeltrdi A*B*¬A<BABdomvol
106 99 105 pm2.61dan A*B*ABdomvol
107 ndmioo ¬A*B*AB=
108 107 86 eqeltrdi ¬A*B*ABdomvol
109 106 108 pm2.61i ABdomvol