Metamath Proof Explorer


Theorem ovolsn

Description: A singleton has 0 outer Lebesgue measure. (Contributed by Mario Carneiro, 15-Aug-2014)

Ref Expression
Assertion ovolsn Avol*A=0

Proof

Step Hyp Ref Expression
1 snfi AFin
2 snssi AA
3 ovolfi AFinAvol*A=0
4 1 2 3 sylancr Avol*A=0