Metamath Proof Explorer


Theorem ovolfi

Description: A finite set has 0 outer Lebesgue measure. (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Assertion ovolfi AFinAvol*A=0

Proof

Step Hyp Ref Expression
1 id AA
2 fict AFinAω
3 nnenom ω
4 3 ensymi ω
5 domentr AωωA
6 2 4 5 sylancl AFinA
7 ovolctb2 AAvol*A=0
8 1 6 7 syl2anr AFinAvol*A=0