| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnvresima | ⊢ ( ◡ (  I   ↾  𝐴 )  “  𝑥 )  =  ( ( ◡  I   “  𝑥 )  ∩  𝐴 ) | 
						
							| 2 |  | cnvi | ⊢ ◡  I   =   I | 
						
							| 3 | 2 | imaeq1i | ⊢ ( ◡  I   “  𝑥 )  =  (  I   “  𝑥 ) | 
						
							| 4 |  | imai | ⊢ (  I   “  𝑥 )  =  𝑥 | 
						
							| 5 | 3 4 | eqtri | ⊢ ( ◡  I   “  𝑥 )  =  𝑥 | 
						
							| 6 | 5 | ineq1i | ⊢ ( ( ◡  I   “  𝑥 )  ∩  𝐴 )  =  ( 𝑥  ∩  𝐴 ) | 
						
							| 7 | 1 6 | eqtri | ⊢ ( ◡ (  I   ↾  𝐴 )  “  𝑥 )  =  ( 𝑥  ∩  𝐴 ) | 
						
							| 8 |  | ioof | ⊢ (,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ | 
						
							| 9 |  | ffn | ⊢ ( (,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ  →  (,)  Fn  ( ℝ*  ×  ℝ* ) ) | 
						
							| 10 |  | ovelrn | ⊢ ( (,)  Fn  ( ℝ*  ×  ℝ* )  →  ( 𝑥  ∈  ran  (,)  ↔  ∃ 𝑦  ∈  ℝ* ∃ 𝑧  ∈  ℝ* 𝑥  =  ( 𝑦 (,) 𝑧 ) ) ) | 
						
							| 11 | 8 9 10 | mp2b | ⊢ ( 𝑥  ∈  ran  (,)  ↔  ∃ 𝑦  ∈  ℝ* ∃ 𝑧  ∈  ℝ* 𝑥  =  ( 𝑦 (,) 𝑧 ) ) | 
						
							| 12 |  | id | ⊢ ( 𝑥  =  ( 𝑦 (,) 𝑧 )  →  𝑥  =  ( 𝑦 (,) 𝑧 ) ) | 
						
							| 13 |  | ioombl | ⊢ ( 𝑦 (,) 𝑧 )  ∈  dom  vol | 
						
							| 14 | 12 13 | eqeltrdi | ⊢ ( 𝑥  =  ( 𝑦 (,) 𝑧 )  →  𝑥  ∈  dom  vol ) | 
						
							| 15 | 14 | a1i | ⊢ ( ( 𝑦  ∈  ℝ*  ∧  𝑧  ∈  ℝ* )  →  ( 𝑥  =  ( 𝑦 (,) 𝑧 )  →  𝑥  ∈  dom  vol ) ) | 
						
							| 16 | 15 | rexlimivv | ⊢ ( ∃ 𝑦  ∈  ℝ* ∃ 𝑧  ∈  ℝ* 𝑥  =  ( 𝑦 (,) 𝑧 )  →  𝑥  ∈  dom  vol ) | 
						
							| 17 | 11 16 | sylbi | ⊢ ( 𝑥  ∈  ran  (,)  →  𝑥  ∈  dom  vol ) | 
						
							| 18 |  | id | ⊢ ( 𝐴  ∈  dom  vol  →  𝐴  ∈  dom  vol ) | 
						
							| 19 |  | inmbl | ⊢ ( ( 𝑥  ∈  dom  vol  ∧  𝐴  ∈  dom  vol )  →  ( 𝑥  ∩  𝐴 )  ∈  dom  vol ) | 
						
							| 20 | 17 18 19 | syl2anr | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  𝑥  ∈  ran  (,) )  →  ( 𝑥  ∩  𝐴 )  ∈  dom  vol ) | 
						
							| 21 | 7 20 | eqeltrid | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  𝑥  ∈  ran  (,) )  →  ( ◡ (  I   ↾  𝐴 )  “  𝑥 )  ∈  dom  vol ) | 
						
							| 22 | 21 | ralrimiva | ⊢ ( 𝐴  ∈  dom  vol  →  ∀ 𝑥  ∈  ran  (,) ( ◡ (  I   ↾  𝐴 )  “  𝑥 )  ∈  dom  vol ) | 
						
							| 23 |  | f1oi | ⊢ (  I   ↾  𝐴 ) : 𝐴 –1-1-onto→ 𝐴 | 
						
							| 24 |  | f1of | ⊢ ( (  I   ↾  𝐴 ) : 𝐴 –1-1-onto→ 𝐴  →  (  I   ↾  𝐴 ) : 𝐴 ⟶ 𝐴 ) | 
						
							| 25 | 23 24 | ax-mp | ⊢ (  I   ↾  𝐴 ) : 𝐴 ⟶ 𝐴 | 
						
							| 26 |  | mblss | ⊢ ( 𝐴  ∈  dom  vol  →  𝐴  ⊆  ℝ ) | 
						
							| 27 |  | fss | ⊢ ( ( (  I   ↾  𝐴 ) : 𝐴 ⟶ 𝐴  ∧  𝐴  ⊆  ℝ )  →  (  I   ↾  𝐴 ) : 𝐴 ⟶ ℝ ) | 
						
							| 28 | 25 26 27 | sylancr | ⊢ ( 𝐴  ∈  dom  vol  →  (  I   ↾  𝐴 ) : 𝐴 ⟶ ℝ ) | 
						
							| 29 |  | ismbf | ⊢ ( (  I   ↾  𝐴 ) : 𝐴 ⟶ ℝ  →  ( (  I   ↾  𝐴 )  ∈  MblFn  ↔  ∀ 𝑥  ∈  ran  (,) ( ◡ (  I   ↾  𝐴 )  “  𝑥 )  ∈  dom  vol ) ) | 
						
							| 30 | 28 29 | syl | ⊢ ( 𝐴  ∈  dom  vol  →  ( (  I   ↾  𝐴 )  ∈  MblFn  ↔  ∀ 𝑥  ∈  ran  (,) ( ◡ (  I   ↾  𝐴 )  “  𝑥 )  ∈  dom  vol ) ) | 
						
							| 31 | 22 30 | mpbird | ⊢ ( 𝐴  ∈  dom  vol  →  (  I   ↾  𝐴 )  ∈  MblFn ) |