| Step |
Hyp |
Ref |
Expression |
| 1 |
|
difundi |
⊢ ( ℝ ∖ ( ( ℝ ∖ 𝐴 ) ∪ ( ℝ ∖ 𝐵 ) ) ) = ( ( ℝ ∖ ( ℝ ∖ 𝐴 ) ) ∩ ( ℝ ∖ ( ℝ ∖ 𝐵 ) ) ) |
| 2 |
|
mblss |
⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) |
| 3 |
|
dfss4 |
⊢ ( 𝐴 ⊆ ℝ ↔ ( ℝ ∖ ( ℝ ∖ 𝐴 ) ) = 𝐴 ) |
| 4 |
2 3
|
sylib |
⊢ ( 𝐴 ∈ dom vol → ( ℝ ∖ ( ℝ ∖ 𝐴 ) ) = 𝐴 ) |
| 5 |
|
mblss |
⊢ ( 𝐵 ∈ dom vol → 𝐵 ⊆ ℝ ) |
| 6 |
|
dfss4 |
⊢ ( 𝐵 ⊆ ℝ ↔ ( ℝ ∖ ( ℝ ∖ 𝐵 ) ) = 𝐵 ) |
| 7 |
5 6
|
sylib |
⊢ ( 𝐵 ∈ dom vol → ( ℝ ∖ ( ℝ ∖ 𝐵 ) ) = 𝐵 ) |
| 8 |
4 7
|
ineqan12d |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( ( ℝ ∖ ( ℝ ∖ 𝐴 ) ) ∩ ( ℝ ∖ ( ℝ ∖ 𝐵 ) ) ) = ( 𝐴 ∩ 𝐵 ) ) |
| 9 |
1 8
|
eqtrid |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( ℝ ∖ ( ( ℝ ∖ 𝐴 ) ∪ ( ℝ ∖ 𝐵 ) ) ) = ( 𝐴 ∩ 𝐵 ) ) |
| 10 |
|
cmmbl |
⊢ ( 𝐴 ∈ dom vol → ( ℝ ∖ 𝐴 ) ∈ dom vol ) |
| 11 |
|
cmmbl |
⊢ ( 𝐵 ∈ dom vol → ( ℝ ∖ 𝐵 ) ∈ dom vol ) |
| 12 |
|
unmbl |
⊢ ( ( ( ℝ ∖ 𝐴 ) ∈ dom vol ∧ ( ℝ ∖ 𝐵 ) ∈ dom vol ) → ( ( ℝ ∖ 𝐴 ) ∪ ( ℝ ∖ 𝐵 ) ) ∈ dom vol ) |
| 13 |
10 11 12
|
syl2an |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( ( ℝ ∖ 𝐴 ) ∪ ( ℝ ∖ 𝐵 ) ) ∈ dom vol ) |
| 14 |
|
cmmbl |
⊢ ( ( ( ℝ ∖ 𝐴 ) ∪ ( ℝ ∖ 𝐵 ) ) ∈ dom vol → ( ℝ ∖ ( ( ℝ ∖ 𝐴 ) ∪ ( ℝ ∖ 𝐵 ) ) ) ∈ dom vol ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( ℝ ∖ ( ( ℝ ∖ 𝐴 ) ∪ ( ℝ ∖ 𝐵 ) ) ) ∈ dom vol ) |
| 16 |
9 15
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( 𝐴 ∩ 𝐵 ) ∈ dom vol ) |