| Step |
Hyp |
Ref |
Expression |
| 1 |
|
indif2 |
⊢ ( 𝐴 ∩ ( ℝ ∖ 𝐵 ) ) = ( ( 𝐴 ∩ ℝ ) ∖ 𝐵 ) |
| 2 |
|
mblss |
⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) |
| 3 |
|
dfss2 |
⊢ ( 𝐴 ⊆ ℝ ↔ ( 𝐴 ∩ ℝ ) = 𝐴 ) |
| 4 |
2 3
|
sylib |
⊢ ( 𝐴 ∈ dom vol → ( 𝐴 ∩ ℝ ) = 𝐴 ) |
| 5 |
4
|
difeq1d |
⊢ ( 𝐴 ∈ dom vol → ( ( 𝐴 ∩ ℝ ) ∖ 𝐵 ) = ( 𝐴 ∖ 𝐵 ) ) |
| 6 |
1 5
|
eqtrid |
⊢ ( 𝐴 ∈ dom vol → ( 𝐴 ∩ ( ℝ ∖ 𝐵 ) ) = ( 𝐴 ∖ 𝐵 ) ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( 𝐴 ∩ ( ℝ ∖ 𝐵 ) ) = ( 𝐴 ∖ 𝐵 ) ) |
| 8 |
|
cmmbl |
⊢ ( 𝐵 ∈ dom vol → ( ℝ ∖ 𝐵 ) ∈ dom vol ) |
| 9 |
|
inmbl |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( ℝ ∖ 𝐵 ) ∈ dom vol ) → ( 𝐴 ∩ ( ℝ ∖ 𝐵 ) ) ∈ dom vol ) |
| 10 |
8 9
|
sylan2 |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( 𝐴 ∩ ( ℝ ∖ 𝐵 ) ) ∈ dom vol ) |
| 11 |
7 10
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( 𝐴 ∖ 𝐵 ) ∈ dom vol ) |