Metamath Proof Explorer


Theorem difmbl

Description: A difference of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014)

Ref Expression
Assertion difmbl
|- ( ( A e. dom vol /\ B e. dom vol ) -> ( A \ B ) e. dom vol )

Proof

Step Hyp Ref Expression
1 indif2
 |-  ( A i^i ( RR \ B ) ) = ( ( A i^i RR ) \ B )
2 mblss
 |-  ( A e. dom vol -> A C_ RR )
3 df-ss
 |-  ( A C_ RR <-> ( A i^i RR ) = A )
4 2 3 sylib
 |-  ( A e. dom vol -> ( A i^i RR ) = A )
5 4 difeq1d
 |-  ( A e. dom vol -> ( ( A i^i RR ) \ B ) = ( A \ B ) )
6 1 5 eqtrid
 |-  ( A e. dom vol -> ( A i^i ( RR \ B ) ) = ( A \ B ) )
7 6 adantr
 |-  ( ( A e. dom vol /\ B e. dom vol ) -> ( A i^i ( RR \ B ) ) = ( A \ B ) )
8 cmmbl
 |-  ( B e. dom vol -> ( RR \ B ) e. dom vol )
9 inmbl
 |-  ( ( A e. dom vol /\ ( RR \ B ) e. dom vol ) -> ( A i^i ( RR \ B ) ) e. dom vol )
10 8 9 sylan2
 |-  ( ( A e. dom vol /\ B e. dom vol ) -> ( A i^i ( RR \ B ) ) e. dom vol )
11 7 10 eqeltrrd
 |-  ( ( A e. dom vol /\ B e. dom vol ) -> ( A \ B ) e. dom vol )