| Step |
Hyp |
Ref |
Expression |
| 1 |
|
indif2 |
|- ( A i^i ( RR \ B ) ) = ( ( A i^i RR ) \ B ) |
| 2 |
|
mblss |
|- ( A e. dom vol -> A C_ RR ) |
| 3 |
|
dfss2 |
|- ( A C_ RR <-> ( A i^i RR ) = A ) |
| 4 |
2 3
|
sylib |
|- ( A e. dom vol -> ( A i^i RR ) = A ) |
| 5 |
4
|
difeq1d |
|- ( A e. dom vol -> ( ( A i^i RR ) \ B ) = ( A \ B ) ) |
| 6 |
1 5
|
eqtrid |
|- ( A e. dom vol -> ( A i^i ( RR \ B ) ) = ( A \ B ) ) |
| 7 |
6
|
adantr |
|- ( ( A e. dom vol /\ B e. dom vol ) -> ( A i^i ( RR \ B ) ) = ( A \ B ) ) |
| 8 |
|
cmmbl |
|- ( B e. dom vol -> ( RR \ B ) e. dom vol ) |
| 9 |
|
inmbl |
|- ( ( A e. dom vol /\ ( RR \ B ) e. dom vol ) -> ( A i^i ( RR \ B ) ) e. dom vol ) |
| 10 |
8 9
|
sylan2 |
|- ( ( A e. dom vol /\ B e. dom vol ) -> ( A i^i ( RR \ B ) ) e. dom vol ) |
| 11 |
7 10
|
eqeltrrd |
|- ( ( A e. dom vol /\ B e. dom vol ) -> ( A \ B ) e. dom vol ) |