Step |
Hyp |
Ref |
Expression |
1 |
|
indif2 |
|- ( A i^i ( RR \ B ) ) = ( ( A i^i RR ) \ B ) |
2 |
|
mblss |
|- ( A e. dom vol -> A C_ RR ) |
3 |
|
df-ss |
|- ( A C_ RR <-> ( A i^i RR ) = A ) |
4 |
2 3
|
sylib |
|- ( A e. dom vol -> ( A i^i RR ) = A ) |
5 |
4
|
difeq1d |
|- ( A e. dom vol -> ( ( A i^i RR ) \ B ) = ( A \ B ) ) |
6 |
1 5
|
eqtrid |
|- ( A e. dom vol -> ( A i^i ( RR \ B ) ) = ( A \ B ) ) |
7 |
6
|
adantr |
|- ( ( A e. dom vol /\ B e. dom vol ) -> ( A i^i ( RR \ B ) ) = ( A \ B ) ) |
8 |
|
cmmbl |
|- ( B e. dom vol -> ( RR \ B ) e. dom vol ) |
9 |
|
inmbl |
|- ( ( A e. dom vol /\ ( RR \ B ) e. dom vol ) -> ( A i^i ( RR \ B ) ) e. dom vol ) |
10 |
8 9
|
sylan2 |
|- ( ( A e. dom vol /\ B e. dom vol ) -> ( A i^i ( RR \ B ) ) e. dom vol ) |
11 |
7 10
|
eqeltrrd |
|- ( ( A e. dom vol /\ B e. dom vol ) -> ( A \ B ) e. dom vol ) |