Step |
Hyp |
Ref |
Expression |
1 |
|
difundi |
|- ( RR \ ( ( RR \ A ) u. ( RR \ B ) ) ) = ( ( RR \ ( RR \ A ) ) i^i ( RR \ ( RR \ B ) ) ) |
2 |
|
mblss |
|- ( A e. dom vol -> A C_ RR ) |
3 |
|
dfss4 |
|- ( A C_ RR <-> ( RR \ ( RR \ A ) ) = A ) |
4 |
2 3
|
sylib |
|- ( A e. dom vol -> ( RR \ ( RR \ A ) ) = A ) |
5 |
|
mblss |
|- ( B e. dom vol -> B C_ RR ) |
6 |
|
dfss4 |
|- ( B C_ RR <-> ( RR \ ( RR \ B ) ) = B ) |
7 |
5 6
|
sylib |
|- ( B e. dom vol -> ( RR \ ( RR \ B ) ) = B ) |
8 |
4 7
|
ineqan12d |
|- ( ( A e. dom vol /\ B e. dom vol ) -> ( ( RR \ ( RR \ A ) ) i^i ( RR \ ( RR \ B ) ) ) = ( A i^i B ) ) |
9 |
1 8
|
eqtrid |
|- ( ( A e. dom vol /\ B e. dom vol ) -> ( RR \ ( ( RR \ A ) u. ( RR \ B ) ) ) = ( A i^i B ) ) |
10 |
|
cmmbl |
|- ( A e. dom vol -> ( RR \ A ) e. dom vol ) |
11 |
|
cmmbl |
|- ( B e. dom vol -> ( RR \ B ) e. dom vol ) |
12 |
|
unmbl |
|- ( ( ( RR \ A ) e. dom vol /\ ( RR \ B ) e. dom vol ) -> ( ( RR \ A ) u. ( RR \ B ) ) e. dom vol ) |
13 |
10 11 12
|
syl2an |
|- ( ( A e. dom vol /\ B e. dom vol ) -> ( ( RR \ A ) u. ( RR \ B ) ) e. dom vol ) |
14 |
|
cmmbl |
|- ( ( ( RR \ A ) u. ( RR \ B ) ) e. dom vol -> ( RR \ ( ( RR \ A ) u. ( RR \ B ) ) ) e. dom vol ) |
15 |
13 14
|
syl |
|- ( ( A e. dom vol /\ B e. dom vol ) -> ( RR \ ( ( RR \ A ) u. ( RR \ B ) ) ) e. dom vol ) |
16 |
9 15
|
eqeltrrd |
|- ( ( A e. dom vol /\ B e. dom vol ) -> ( A i^i B ) e. dom vol ) |