Metamath Proof Explorer


Theorem ovelrn

Description: A member of an operation's range is a value of the operation. (Contributed by NM, 7-Feb-2007) (Revised by Mario Carneiro, 30-Jan-2014)

Ref Expression
Assertion ovelrn FFnA×BCranFxAyBC=xFy

Proof

Step Hyp Ref Expression
1 fnrnov FFnA×BranF=z|xAyBz=xFy
2 1 eleq2d FFnA×BCranFCz|xAyBz=xFy
3 ovex xFyV
4 eleq1 C=xFyCVxFyV
5 3 4 mpbiri C=xFyCV
6 5 rexlimivw yBC=xFyCV
7 6 rexlimivw xAyBC=xFyCV
8 eqeq1 z=Cz=xFyC=xFy
9 8 2rexbidv z=CxAyBz=xFyxAyBC=xFy
10 7 9 elab3 Cz|xAyBz=xFyxAyBC=xFy
11 2 10 bitrdi FFnA×BCranFxAyBC=xFy