Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|
2 |
1
|
itgeq2dv |
|
3 |
|
oveq1 |
|
4 |
2 3
|
eqeq12d |
|
5 |
|
simplr |
|
6 |
|
fconstmpt |
|
7 |
|
simpl1 |
|
8 |
|
simp2 |
|
9 |
8
|
adantr |
|
10 |
|
simpr |
|
11 |
10
|
recnd |
|
12 |
|
iblconst |
|
13 |
7 9 11 12
|
syl3anc |
|
14 |
6 13
|
eqeltrrid |
|
15 |
5 14
|
itgrevallem1 |
|
16 |
|
ifan |
|
17 |
16
|
mpteq2i |
|
18 |
17
|
fveq2i |
|
19 |
|
0re |
|
20 |
|
ifcl |
|
21 |
10 19 20
|
sylancl |
|
22 |
|
max1 |
|
23 |
19 10 22
|
sylancr |
|
24 |
|
elrege0 |
|
25 |
21 23 24
|
sylanbrc |
|
26 |
|
itg2const |
|
27 |
7 9 25 26
|
syl3anc |
|
28 |
18 27
|
eqtrid |
|
29 |
|
ifan |
|
30 |
29
|
mpteq2i |
|
31 |
30
|
fveq2i |
|
32 |
|
renegcl |
|
33 |
32
|
adantl |
|
34 |
|
ifcl |
|
35 |
33 19 34
|
sylancl |
|
36 |
|
max1 |
|
37 |
19 33 36
|
sylancr |
|
38 |
|
elrege0 |
|
39 |
35 37 38
|
sylanbrc |
|
40 |
|
itg2const |
|
41 |
7 9 39 40
|
syl3anc |
|
42 |
31 41
|
eqtrid |
|
43 |
28 42
|
oveq12d |
|
44 |
21
|
recnd |
|
45 |
35
|
recnd |
|
46 |
8
|
recnd |
|
47 |
46
|
adantr |
|
48 |
44 45 47
|
subdird |
|
49 |
|
max0sub |
|
50 |
49
|
adantl |
|
51 |
50
|
oveq1d |
|
52 |
43 48 51
|
3eqtr2rd |
|
53 |
15 52
|
eqtr4d |
|
54 |
53
|
ralrimiva |
|
55 |
|
recl |
|
56 |
55
|
3ad2ant3 |
|
57 |
4 54 56
|
rspcdva |
|
58 |
|
simpl |
|
59 |
58
|
itgeq2dv |
|
60 |
|
oveq1 |
|
61 |
59 60
|
eqeq12d |
|
62 |
|
imcl |
|
63 |
62
|
3ad2ant3 |
|
64 |
61 54 63
|
rspcdva |
|
65 |
64
|
oveq2d |
|
66 |
|
ax-icn |
|
67 |
66
|
a1i |
|
68 |
63
|
recnd |
|
69 |
67 68 46
|
mulassd |
|
70 |
65 69
|
eqtr4d |
|
71 |
57 70
|
oveq12d |
|
72 |
56
|
recnd |
|
73 |
|
mulcl |
|
74 |
66 68 73
|
sylancr |
|
75 |
72 74 46
|
adddird |
|
76 |
71 75
|
eqtr4d |
|
77 |
|
simpl3 |
|
78 |
|
fconstmpt |
|
79 |
|
iblconst |
|
80 |
78 79
|
eqeltrrid |
|
81 |
77 80
|
itgcnval |
|
82 |
|
replim |
|
83 |
82
|
3ad2ant3 |
|
84 |
83
|
oveq1d |
|
85 |
76 81 84
|
3eqtr4d |
|