Metamath Proof Explorer


Theorem itgcnval

Description: Decompose the integral of a complex function into real and imaginary parts. (Contributed by Mario Carneiro, 6-Aug-2014)

Ref Expression
Hypotheses itgcnval.1 φxABV
itgcnval.2 φxAB𝐿1
Assertion itgcnval φABdx=ABdx+iABdx

Proof

Step Hyp Ref Expression
1 itgcnval.1 φxABV
2 itgcnval.2 φxAB𝐿1
3 eqid 2xifxA0BB0=2xifxA0BB0
4 eqid 2xifxA0BB0=2xifxA0BB0
5 eqid 2xifxA0BB0=2xifxA0BB0
6 eqid 2xifxA0BB0=2xifxA0BB0
7 3 4 5 6 1 2 itgcnlem φABdx=2xifxA0BB0-2xifxA0BB0+i2xifxA0BB02xifxA0BB0
8 iblmbf xAB𝐿1xABMblFn
9 2 8 syl φxABMblFn
10 9 1 mbfmptcl φxAB
11 10 recld φxAB
12 10 iblcn φxAB𝐿1xAB𝐿1xAB𝐿1
13 2 12 mpbid φxAB𝐿1xAB𝐿1
14 13 simpld φxAB𝐿1
15 11 14 itgrevallem1 φABdx=2xifxA0BB02xifxA0BB0
16 10 imcld φxAB
17 13 simprd φxAB𝐿1
18 16 17 itgrevallem1 φABdx=2xifxA0BB02xifxA0BB0
19 18 oveq2d φiABdx=i2xifxA0BB02xifxA0BB0
20 15 19 oveq12d φABdx+iABdx=2xifxA0BB0-2xifxA0BB0+i2xifxA0BB02xifxA0BB0
21 7 20 eqtr4d φABdx=ABdx+iABdx