Description: Decompose the integral of a complex function into real and imaginary parts. (Contributed by Mario Carneiro, 6-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | itgcnval.1 | |
|
itgcnval.2 | |
||
Assertion | itgcnval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itgcnval.1 | |
|
2 | itgcnval.2 | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | 3 4 5 6 1 2 | itgcnlem | |
8 | iblmbf | |
|
9 | 2 8 | syl | |
10 | 9 1 | mbfmptcl | |
11 | 10 | recld | |
12 | 10 | iblcn | |
13 | 2 12 | mpbid | |
14 | 13 | simpld | |
15 | 11 14 | itgrevallem1 | |
16 | 10 | imcld | |
17 | 13 | simprd | |
18 | 16 17 | itgrevallem1 | |
19 | 18 | oveq2d | |
20 | 15 19 | oveq12d | |
21 | 7 20 | eqtr4d | |