Description: Lemma for itgposval and itgreval . (Contributed by Mario Carneiro, 31-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iblrelem.1 | |
|
itgreval.2 | |
||
Assertion | itgrevallem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iblrelem.1 | |
|
2 | itgreval.2 | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | 3 4 5 6 1 2 | itgcnlem | |
8 | 1 | rered | |
9 | 8 | ibllem | |
10 | 9 | mpteq2dv | |
11 | 10 | fveq2d | |
12 | 8 | negeqd | |
13 | 12 | ibllem | |
14 | 13 | mpteq2dv | |
15 | 14 | fveq2d | |
16 | 11 15 | oveq12d | |
17 | 1 | reim0d | |
18 | 17 | itgvallem3 | |
19 | 17 | negeqd | |
20 | neg0 | |
|
21 | 19 20 | eqtrdi | |
22 | 21 | itgvallem3 | |
23 | 18 22 | oveq12d | |
24 | 0m0e0 | |
|
25 | 23 24 | eqtrdi | |
26 | 25 | oveq2d | |
27 | it0e0 | |
|
28 | 26 27 | eqtrdi | |
29 | 16 28 | oveq12d | |
30 | 1 | iblrelem | |
31 | 2 30 | mpbid | |
32 | 31 | simp2d | |
33 | 31 | simp3d | |
34 | 32 33 | resubcld | |
35 | 34 | recnd | |
36 | 35 | addridd | |
37 | 7 29 36 | 3eqtrd | |