| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iblrelem.1 |
|
| 2 |
|
itgreval.2 |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
3 4 5 6 1 2
|
itgcnlem |
|
| 8 |
1
|
rered |
|
| 9 |
8
|
ibllem |
|
| 10 |
9
|
mpteq2dv |
|
| 11 |
10
|
fveq2d |
|
| 12 |
8
|
negeqd |
|
| 13 |
12
|
ibllem |
|
| 14 |
13
|
mpteq2dv |
|
| 15 |
14
|
fveq2d |
|
| 16 |
11 15
|
oveq12d |
|
| 17 |
1
|
reim0d |
|
| 18 |
17
|
itgvallem3 |
|
| 19 |
17
|
negeqd |
|
| 20 |
|
neg0 |
|
| 21 |
19 20
|
eqtrdi |
|
| 22 |
21
|
itgvallem3 |
|
| 23 |
18 22
|
oveq12d |
|
| 24 |
|
0m0e0 |
|
| 25 |
23 24
|
eqtrdi |
|
| 26 |
25
|
oveq2d |
|
| 27 |
|
it0e0 |
|
| 28 |
26 27
|
eqtrdi |
|
| 29 |
16 28
|
oveq12d |
|
| 30 |
1
|
iblrelem |
|
| 31 |
2 30
|
mpbid |
|
| 32 |
31
|
simp2d |
|
| 33 |
31
|
simp3d |
|
| 34 |
32 33
|
resubcld |
|
| 35 |
34
|
recnd |
|
| 36 |
35
|
addridd |
|
| 37 |
7 29 36
|
3eqtrd |
|