Metamath Proof Explorer


Theorem ibllem

Description: Conditioned equality theorem for the if statement. (Contributed by Mario Carneiro, 31-Jul-2014)

Ref Expression
Hypothesis ibllem.1 φxAB=C
Assertion ibllem φifxA0BB0=ifxA0CC0

Proof

Step Hyp Ref Expression
1 ibllem.1 φxAB=C
2 1 breq2d φxA0B0C
3 2 pm5.32da φxA0BxA0C
4 3 ifbid φifxA0BB0=ifxA0CB0
5 1 adantrr φxA0CB=C
6 5 ifeq1da φifxA0CB0=ifxA0CC0
7 4 6 eqtrd φifxA0BB0=ifxA0CC0