Metamath Proof Explorer


Theorem isibl

Description: The predicate " F is integrable". The "integrable" predicate corresponds roughly to the range of validity of S. A Bd x , which is to say that the expression S. A B d x doesn't make sense unless ( x e. A |-> B ) e. L^1 . (Contributed by Mario Carneiro, 28-Jun-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses isibl.1 φG=xifxA0TT0
isibl.2 φxAT=Bik
isibl.3 φdomF=A
isibl.4 φxAFx=B
Assertion isibl φF𝐿1FMblFnk032G

Proof

Step Hyp Ref Expression
1 isibl.1 φG=xifxA0TT0
2 isibl.2 φxAT=Bik
3 isibl.3 φdomF=A
4 isibl.4 φxAFx=B
5 fvex fxikV
6 breq2 y=fxik0y0fxik
7 6 anbi2d y=fxikxdomf0yxdomf0fxik
8 id y=fxiky=fxik
9 7 8 ifbieq1d y=fxikifxdomf0yy0=ifxdomf0fxikfxik0
10 5 9 csbie fxik/yifxdomf0yy0=ifxdomf0fxikfxik0
11 dmeq f=Fdomf=domF
12 11 eleq2d f=FxdomfxdomF
13 fveq1 f=Ffx=Fx
14 13 fvoveq1d f=Ffxik=Fxik
15 14 breq2d f=F0fxik0Fxik
16 12 15 anbi12d f=Fxdomf0fxikxdomF0Fxik
17 16 14 ifbieq1d f=Fifxdomf0fxikfxik0=ifxdomF0FxikFxik0
18 10 17 eqtrid f=Ffxik/yifxdomf0yy0=ifxdomF0FxikFxik0
19 18 mpteq2dv f=Fxfxik/yifxdomf0yy0=xifxdomF0FxikFxik0
20 19 fveq2d f=F2xfxik/yifxdomf0yy0=2xifxdomF0FxikFxik0
21 20 eleq1d f=F2xfxik/yifxdomf0yy02xifxdomF0FxikFxik0
22 21 ralbidv f=Fk032xfxik/yifxdomf0yy0k032xifxdomF0FxikFxik0
23 df-ibl 𝐿1=fMblFn|k032xfxik/yifxdomf0yy0
24 22 23 elrab2 F𝐿1FMblFnk032xifxdomF0FxikFxik0
25 3 eleq2d φxdomFxA
26 25 anbi1d φxdomF0FxikxA0Fxik
27 26 ifbid φifxdomF0FxikFxik0=ifxA0FxikFxik0
28 4 fvoveq1d φxAFxik=Bik
29 28 2 eqtr4d φxAFxik=T
30 29 ibllem φifxA0FxikFxik0=ifxA0TT0
31 27 30 eqtrd φifxdomF0FxikFxik0=ifxA0TT0
32 31 mpteq2dv φxifxdomF0FxikFxik0=xifxA0TT0
33 32 1 eqtr4d φxifxdomF0FxikFxik0=G
34 33 fveq2d φ2xifxdomF0FxikFxik0=2G
35 34 eleq1d φ2xifxdomF0FxikFxik02G
36 35 ralbidv φk032xifxdomF0FxikFxik0k032G
37 36 anbi2d φFMblFnk032xifxdomF0FxikFxik0FMblFnk032G
38 24 37 bitrid φF𝐿1FMblFnk032G