Metamath Proof Explorer


Theorem isibl2

Description: The predicate " F is integrable" when F is a mapping operation. (Contributed by Mario Carneiro, 31-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses isibl.1 φG=xifxA0TT0
isibl.2 φxAT=Bik
isibl2.3 φxABV
Assertion isibl2 φxAB𝐿1xABMblFnk032G

Proof

Step Hyp Ref Expression
1 isibl.1 φG=xifxA0TT0
2 isibl.2 φxAT=Bik
3 isibl2.3 φxABV
4 nfv xyA
5 nfcv _x0
6 nfcv _x
7 nfcv _x
8 nffvmpt1 _xxABy
9 nfcv _x÷
10 nfcv _xik
11 8 9 10 nfov _xxAByik
12 7 11 nffv _xxAByik
13 5 6 12 nfbr x0xAByik
14 4 13 nfan xyA0xAByik
15 14 12 5 nfif _xifyA0xAByikxAByik0
16 nfcv _yifxA0xABxikxABxik0
17 eleq1w y=xyAxA
18 fveq2 y=xxABy=xABx
19 18 fvoveq1d y=xxAByik=xABxik
20 19 breq2d y=x0xAByik0xABxik
21 17 20 anbi12d y=xyA0xAByikxA0xABxik
22 21 19 ifbieq1d y=xifyA0xAByikxAByik0=ifxA0xABxikxABxik0
23 15 16 22 cbvmpt yifyA0xAByikxAByik0=xifxA0xABxikxABxik0
24 simpr φxAxA
25 eqid xAB=xAB
26 25 fvmpt2 xABVxABx=B
27 24 3 26 syl2anc φxAxABx=B
28 27 fvoveq1d φxAxABxik=Bik
29 28 2 eqtr4d φxAxABxik=T
30 29 ibllem φifxA0xABxikxABxik0=ifxA0TT0
31 30 mpteq2dv φxifxA0xABxikxABxik0=xifxA0TT0
32 23 31 eqtrid φyifyA0xAByikxAByik0=xifxA0TT0
33 1 32 eqtr4d φG=yifyA0xAByikxAByik0
34 eqidd φyAxAByik=xAByik
35 25 3 dmmptd φdomxAB=A
36 eqidd φyAxABy=xABy
37 33 34 35 36 isibl φxAB𝐿1xABMblFnk032G