| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isibl.1 |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) ) |
| 2 |
|
isibl.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑇 = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) |
| 3 |
|
isibl2.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 4 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐴 |
| 5 |
|
nfcv |
⊢ Ⅎ 𝑥 0 |
| 6 |
|
nfcv |
⊢ Ⅎ 𝑥 ≤ |
| 7 |
|
nfcv |
⊢ Ⅎ 𝑥 ℜ |
| 8 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) |
| 9 |
|
nfcv |
⊢ Ⅎ 𝑥 / |
| 10 |
|
nfcv |
⊢ Ⅎ 𝑥 ( i ↑ 𝑘 ) |
| 11 |
8 9 10
|
nfov |
⊢ Ⅎ 𝑥 ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) |
| 12 |
7 11
|
nffv |
⊢ Ⅎ 𝑥 ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) |
| 13 |
5 6 12
|
nfbr |
⊢ Ⅎ 𝑥 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) |
| 14 |
4 13
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) |
| 15 |
14 12 5
|
nfif |
⊢ Ⅎ 𝑥 if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) , 0 ) |
| 16 |
|
nfcv |
⊢ Ⅎ 𝑦 if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) |
| 17 |
|
eleq1w |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) |
| 18 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
| 19 |
18
|
fvoveq1d |
⊢ ( 𝑦 = 𝑥 → ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) |
| 20 |
19
|
breq2d |
⊢ ( 𝑦 = 𝑥 → ( 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ↔ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) ) |
| 21 |
17 20
|
anbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) ) ) |
| 22 |
21 19
|
ifbieq1d |
⊢ ( 𝑦 = 𝑥 → if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
| 23 |
15 16 22
|
cbvmpt |
⊢ ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
| 24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 25 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 26 |
25
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 27 |
24 3 26
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 28 |
27
|
fvoveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) |
| 29 |
28 2
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) = 𝑇 ) |
| 30 |
29
|
ibllem |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) |
| 31 |
30
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) ) |
| 32 |
23 31
|
eqtrid |
⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) ) |
| 33 |
1 32
|
eqtr4d |
⊢ ( 𝜑 → 𝐺 = ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) |
| 34 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) |
| 35 |
25 3
|
dmmptd |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 36 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) |
| 37 |
33 34 35 36
|
isibl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ 𝐺 ) ∈ ℝ ) ) ) |