Metamath Proof Explorer


Theorem isibl2

Description: The predicate " F is integrable" when F is a mapping operation. (Contributed by Mario Carneiro, 31-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses isibl.1 ( 𝜑𝐺 = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) )
isibl.2 ( ( 𝜑𝑥𝐴 ) → 𝑇 = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) )
isibl2.3 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
Assertion isibl2 ( 𝜑 → ( ( 𝑥𝐴𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥𝐴𝐵 ) ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2𝐺 ) ∈ ℝ ) ) )

Proof

Step Hyp Ref Expression
1 isibl.1 ( 𝜑𝐺 = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) )
2 isibl.2 ( ( 𝜑𝑥𝐴 ) → 𝑇 = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) )
3 isibl2.3 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
4 nfv 𝑥 𝑦𝐴
5 nfcv 𝑥 0
6 nfcv 𝑥
7 nfcv 𝑥
8 nffvmpt1 𝑥 ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 )
9 nfcv 𝑥 /
10 nfcv 𝑥 ( i ↑ 𝑘 )
11 8 9 10 nfov 𝑥 ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) )
12 7 11 nffv 𝑥 ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) )
13 5 6 12 nfbr 𝑥 0 ≤ ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) )
14 4 13 nfan 𝑥 ( 𝑦𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) )
15 14 12 5 nfif 𝑥 if ( ( 𝑦𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) , 0 )
16 nfcv 𝑦 if ( ( 𝑥𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 )
17 eleq1w ( 𝑦 = 𝑥 → ( 𝑦𝐴𝑥𝐴 ) )
18 fveq2 ( 𝑦 = 𝑥 → ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) = ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) )
19 18 fvoveq1d ( 𝑦 = 𝑥 → ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) )
20 19 breq2d ( 𝑦 = 𝑥 → ( 0 ≤ ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ↔ 0 ≤ ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) )
21 17 20 anbi12d ( 𝑦 = 𝑥 → ( ( 𝑦𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) ↔ ( 𝑥𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) ) )
22 21 19 ifbieq1d ( 𝑦 = 𝑥 → if ( ( 𝑦𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( ( 𝑥𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) )
23 15 16 22 cbvmpt ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) )
24 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
25 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
26 25 fvmpt2 ( ( 𝑥𝐴𝐵𝑉 ) → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = 𝐵 )
27 24 3 26 syl2anc ( ( 𝜑𝑥𝐴 ) → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = 𝐵 )
28 27 fvoveq1d ( ( 𝜑𝑥𝐴 ) → ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) )
29 28 2 eqtr4d ( ( 𝜑𝑥𝐴 ) → ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) = 𝑇 )
30 29 ibllem ( 𝜑 → if ( ( 𝑥𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) )
31 30 mpteq2dv ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) )
32 23 31 syl5eq ( 𝜑 → ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) )
33 1 32 eqtr4d ( 𝜑𝐺 = ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) )
34 eqidd ( ( 𝜑𝑦𝐴 ) → ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) )
35 25 3 dmmptd ( 𝜑 → dom ( 𝑥𝐴𝐵 ) = 𝐴 )
36 eqidd ( ( 𝜑𝑦𝐴 ) → ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) = ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) )
37 33 34 35 36 isibl ( 𝜑 → ( ( 𝑥𝐴𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥𝐴𝐵 ) ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2𝐺 ) ∈ ℝ ) ) )