Step |
Hyp |
Ref |
Expression |
1 |
|
isibl.1 |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) ) |
2 |
|
isibl.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑇 = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) |
3 |
|
isibl2.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
4 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐴 |
5 |
|
nfcv |
⊢ Ⅎ 𝑥 0 |
6 |
|
nfcv |
⊢ Ⅎ 𝑥 ≤ |
7 |
|
nfcv |
⊢ Ⅎ 𝑥 ℜ |
8 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) |
9 |
|
nfcv |
⊢ Ⅎ 𝑥 / |
10 |
|
nfcv |
⊢ Ⅎ 𝑥 ( i ↑ 𝑘 ) |
11 |
8 9 10
|
nfov |
⊢ Ⅎ 𝑥 ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) |
12 |
7 11
|
nffv |
⊢ Ⅎ 𝑥 ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) |
13 |
5 6 12
|
nfbr |
⊢ Ⅎ 𝑥 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) |
14 |
4 13
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) |
15 |
14 12 5
|
nfif |
⊢ Ⅎ 𝑥 if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) , 0 ) |
16 |
|
nfcv |
⊢ Ⅎ 𝑦 if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) |
17 |
|
eleq1w |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) |
18 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
19 |
18
|
fvoveq1d |
⊢ ( 𝑦 = 𝑥 → ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) |
20 |
19
|
breq2d |
⊢ ( 𝑦 = 𝑥 → ( 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ↔ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) ) |
21 |
17 20
|
anbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) ) ) |
22 |
21 19
|
ifbieq1d |
⊢ ( 𝑦 = 𝑥 → if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
23 |
15 16 22
|
cbvmpt |
⊢ ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
25 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
26 |
25
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
27 |
24 3 26
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
28 |
27
|
fvoveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) |
29 |
28 2
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) = 𝑇 ) |
30 |
29
|
ibllem |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) |
31 |
30
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) ) |
32 |
23 31
|
eqtrid |
⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) ) |
33 |
1 32
|
eqtr4d |
⊢ ( 𝜑 → 𝐺 = ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) |
34 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) / ( i ↑ 𝑘 ) ) ) ) |
35 |
25 3
|
dmmptd |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
36 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) |
37 |
33 34 35 36
|
isibl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ 𝐺 ) ∈ ℝ ) ) ) |