Metamath Proof Explorer


Theorem itgposval

Description: The integral of a nonnegative function. (Contributed by Mario Carneiro, 31-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses iblrelem.1 φxAB
itgreval.2 φxAB𝐿1
itgposval.3 φxA0B
Assertion itgposval φABdx=2xifxAB0

Proof

Step Hyp Ref Expression
1 iblrelem.1 φxAB
2 itgreval.2 φxAB𝐿1
3 itgposval.3 φxA0B
4 1 2 itgrevallem1 φABdx=2xifxA0BB02xifxA0BB0
5 3 ex φxA0B
6 5 pm4.71rd φxA0BxA
7 ancom 0BxAxA0B
8 6 7 bitr2di φxA0BxA
9 8 ifbid φifxA0BB0=ifxAB0
10 9 mpteq2dv φxifxA0BB0=xifxAB0
11 10 fveq2d φ2xifxA0BB0=2xifxAB0
12 1 3 iblposlem φ2xifxA0BB0=0
13 11 12 oveq12d φ2xifxA0BB02xifxA0BB0=2xifxAB00
14 1 3 iblpos φxAB𝐿1xABMblFn2xifxAB0
15 2 14 mpbid φxABMblFn2xifxAB0
16 15 simprd φ2xifxAB0
17 16 recnd φ2xifxAB0
18 17 subid1d φ2xifxAB00=2xifxAB0
19 4 13 18 3eqtrd φABdx=2xifxAB0