Metamath Proof Explorer


Theorem iblposlem

Description: Lemma for iblpos . (Contributed by Mario Carneiro, 31-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses iblrelem.1 φxAB
iblpos.2 φxA0B
Assertion iblposlem φ2xifxA0BB0=0

Proof

Step Hyp Ref Expression
1 iblrelem.1 φxAB
2 iblpos.2 φxA0B
3 1 le0neg2d φxA0BB0
4 2 3 mpbid φxAB0
5 4 adantrr φxA0BB0
6 simprr φxA0B0B
7 1 adantrr φxA0BB
8 7 renegcld φxA0BB
9 0re 0
10 letri3 B0B=0B00B
11 8 9 10 sylancl φxA0BB=0B00B
12 5 6 11 mpbir2and φxA0BB=0
13 12 ifeq1da φifxA0BB0=ifxA0B00
14 ifid ifxA0B00=0
15 13 14 eqtrdi φifxA0BB0=0
16 15 mpteq2dv φxifxA0BB0=x0
17 fconstmpt ×0=x0
18 16 17 eqtr4di φxifxA0BB0=×0
19 18 fveq2d φ2xifxA0BB0=2×0
20 itg20 2×0=0
21 19 20 eqtrdi φ2xifxA0BB0=0