Metamath Proof Explorer


Theorem iblposlem

Description: Lemma for iblpos . (Contributed by Mario Carneiro, 31-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses iblrelem.1 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
iblpos.2 ( ( 𝜑𝑥𝐴 ) → 0 ≤ 𝐵 )
Assertion iblposlem ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) = 0 )

Proof

Step Hyp Ref Expression
1 iblrelem.1 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
2 iblpos.2 ( ( 𝜑𝑥𝐴 ) → 0 ≤ 𝐵 )
3 1 le0neg2d ( ( 𝜑𝑥𝐴 ) → ( 0 ≤ 𝐵 ↔ - 𝐵 ≤ 0 ) )
4 2 3 mpbid ( ( 𝜑𝑥𝐴 ) → - 𝐵 ≤ 0 )
5 4 adantrr ( ( 𝜑 ∧ ( 𝑥𝐴 ∧ 0 ≤ - 𝐵 ) ) → - 𝐵 ≤ 0 )
6 simprr ( ( 𝜑 ∧ ( 𝑥𝐴 ∧ 0 ≤ - 𝐵 ) ) → 0 ≤ - 𝐵 )
7 1 adantrr ( ( 𝜑 ∧ ( 𝑥𝐴 ∧ 0 ≤ - 𝐵 ) ) → 𝐵 ∈ ℝ )
8 7 renegcld ( ( 𝜑 ∧ ( 𝑥𝐴 ∧ 0 ≤ - 𝐵 ) ) → - 𝐵 ∈ ℝ )
9 0re 0 ∈ ℝ
10 letri3 ( ( - 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → ( - 𝐵 = 0 ↔ ( - 𝐵 ≤ 0 ∧ 0 ≤ - 𝐵 ) ) )
11 8 9 10 sylancl ( ( 𝜑 ∧ ( 𝑥𝐴 ∧ 0 ≤ - 𝐵 ) ) → ( - 𝐵 = 0 ↔ ( - 𝐵 ≤ 0 ∧ 0 ≤ - 𝐵 ) ) )
12 5 6 11 mpbir2and ( ( 𝜑 ∧ ( 𝑥𝐴 ∧ 0 ≤ - 𝐵 ) ) → - 𝐵 = 0 )
13 12 ifeq1da ( 𝜑 → if ( ( 𝑥𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) = if ( ( 𝑥𝐴 ∧ 0 ≤ - 𝐵 ) , 0 , 0 ) )
14 ifid if ( ( 𝑥𝐴 ∧ 0 ≤ - 𝐵 ) , 0 , 0 ) = 0
15 13 14 eqtrdi ( 𝜑 → if ( ( 𝑥𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) = 0 )
16 15 mpteq2dv ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ 0 ) )
17 fconstmpt ( ℝ × { 0 } ) = ( 𝑥 ∈ ℝ ↦ 0 )
18 16 17 eqtr4di ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) = ( ℝ × { 0 } ) )
19 18 fveq2d ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) = ( ∫2 ‘ ( ℝ × { 0 } ) ) )
20 itg20 ( ∫2 ‘ ( ℝ × { 0 } ) ) = 0
21 19 20 eqtrdi ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) = 0 )