| Step |
Hyp |
Ref |
Expression |
| 1 |
|
i1f0 |
⊢ ( ℝ × { 0 } ) ∈ dom ∫1 |
| 2 |
|
reex |
⊢ ℝ ∈ V |
| 3 |
2
|
a1i |
⊢ ( ⊤ → ℝ ∈ V ) |
| 4 |
|
i1ff |
⊢ ( ( ℝ × { 0 } ) ∈ dom ∫1 → ( ℝ × { 0 } ) : ℝ ⟶ ℝ ) |
| 5 |
1 4
|
mp1i |
⊢ ( ⊤ → ( ℝ × { 0 } ) : ℝ ⟶ ℝ ) |
| 6 |
|
leid |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ≤ 𝑥 ) |
| 7 |
6
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → 𝑥 ≤ 𝑥 ) |
| 8 |
3 5 7
|
caofref |
⊢ ( ⊤ → ( ℝ × { 0 } ) ∘r ≤ ( ℝ × { 0 } ) ) |
| 9 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 10 |
9
|
a1i |
⊢ ( ⊤ → ℝ ⊆ ℂ ) |
| 11 |
5
|
ffnd |
⊢ ( ⊤ → ( ℝ × { 0 } ) Fn ℝ ) |
| 12 |
10 11
|
0pledm |
⊢ ( ⊤ → ( 0𝑝 ∘r ≤ ( ℝ × { 0 } ) ↔ ( ℝ × { 0 } ) ∘r ≤ ( ℝ × { 0 } ) ) ) |
| 13 |
8 12
|
mpbird |
⊢ ( ⊤ → 0𝑝 ∘r ≤ ( ℝ × { 0 } ) ) |
| 14 |
13
|
mptru |
⊢ 0𝑝 ∘r ≤ ( ℝ × { 0 } ) |
| 15 |
|
itg2itg1 |
⊢ ( ( ( ℝ × { 0 } ) ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ ( ℝ × { 0 } ) ) → ( ∫2 ‘ ( ℝ × { 0 } ) ) = ( ∫1 ‘ ( ℝ × { 0 } ) ) ) |
| 16 |
1 14 15
|
mp2an |
⊢ ( ∫2 ‘ ( ℝ × { 0 } ) ) = ( ∫1 ‘ ( ℝ × { 0 } ) ) |
| 17 |
|
itg10 |
⊢ ( ∫1 ‘ ( ℝ × { 0 } ) ) = 0 |
| 18 |
16 17
|
eqtri |
⊢ ( ∫2 ‘ ( ℝ × { 0 } ) ) = 0 |