| Step |
Hyp |
Ref |
Expression |
| 1 |
|
i1f0 |
|- ( RR X. { 0 } ) e. dom S.1 |
| 2 |
|
reex |
|- RR e. _V |
| 3 |
2
|
a1i |
|- ( T. -> RR e. _V ) |
| 4 |
|
i1ff |
|- ( ( RR X. { 0 } ) e. dom S.1 -> ( RR X. { 0 } ) : RR --> RR ) |
| 5 |
1 4
|
mp1i |
|- ( T. -> ( RR X. { 0 } ) : RR --> RR ) |
| 6 |
|
leid |
|- ( x e. RR -> x <_ x ) |
| 7 |
6
|
adantl |
|- ( ( T. /\ x e. RR ) -> x <_ x ) |
| 8 |
3 5 7
|
caofref |
|- ( T. -> ( RR X. { 0 } ) oR <_ ( RR X. { 0 } ) ) |
| 9 |
|
ax-resscn |
|- RR C_ CC |
| 10 |
9
|
a1i |
|- ( T. -> RR C_ CC ) |
| 11 |
5
|
ffnd |
|- ( T. -> ( RR X. { 0 } ) Fn RR ) |
| 12 |
10 11
|
0pledm |
|- ( T. -> ( 0p oR <_ ( RR X. { 0 } ) <-> ( RR X. { 0 } ) oR <_ ( RR X. { 0 } ) ) ) |
| 13 |
8 12
|
mpbird |
|- ( T. -> 0p oR <_ ( RR X. { 0 } ) ) |
| 14 |
13
|
mptru |
|- 0p oR <_ ( RR X. { 0 } ) |
| 15 |
|
itg2itg1 |
|- ( ( ( RR X. { 0 } ) e. dom S.1 /\ 0p oR <_ ( RR X. { 0 } ) ) -> ( S.2 ` ( RR X. { 0 } ) ) = ( S.1 ` ( RR X. { 0 } ) ) ) |
| 16 |
1 14 15
|
mp2an |
|- ( S.2 ` ( RR X. { 0 } ) ) = ( S.1 ` ( RR X. { 0 } ) ) |
| 17 |
|
itg10 |
|- ( S.1 ` ( RR X. { 0 } ) ) = 0 |
| 18 |
16 17
|
eqtri |
|- ( S.2 ` ( RR X. { 0 } ) ) = 0 |