| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0re |
|- 0 e. RR |
| 2 |
1
|
fconst6 |
|- ( RR X. { 0 } ) : RR --> RR |
| 3 |
2
|
a1i |
|- ( T. -> ( RR X. { 0 } ) : RR --> RR ) |
| 4 |
|
snfi |
|- { 0 } e. Fin |
| 5 |
|
rnxpss |
|- ran ( RR X. { 0 } ) C_ { 0 } |
| 6 |
|
ssfi |
|- ( ( { 0 } e. Fin /\ ran ( RR X. { 0 } ) C_ { 0 } ) -> ran ( RR X. { 0 } ) e. Fin ) |
| 7 |
4 5 6
|
mp2an |
|- ran ( RR X. { 0 } ) e. Fin |
| 8 |
7
|
a1i |
|- ( T. -> ran ( RR X. { 0 } ) e. Fin ) |
| 9 |
|
difss |
|- ( ran ( RR X. { 0 } ) \ { 0 } ) C_ ran ( RR X. { 0 } ) |
| 10 |
9 5
|
sstri |
|- ( ran ( RR X. { 0 } ) \ { 0 } ) C_ { 0 } |
| 11 |
10
|
sseli |
|- ( x e. ( ran ( RR X. { 0 } ) \ { 0 } ) -> x e. { 0 } ) |
| 12 |
11
|
adantl |
|- ( ( T. /\ x e. ( ran ( RR X. { 0 } ) \ { 0 } ) ) -> x e. { 0 } ) |
| 13 |
|
eldifn |
|- ( x e. ( ran ( RR X. { 0 } ) \ { 0 } ) -> -. x e. { 0 } ) |
| 14 |
13
|
adantl |
|- ( ( T. /\ x e. ( ran ( RR X. { 0 } ) \ { 0 } ) ) -> -. x e. { 0 } ) |
| 15 |
12 14
|
pm2.21dd |
|- ( ( T. /\ x e. ( ran ( RR X. { 0 } ) \ { 0 } ) ) -> ( `' ( RR X. { 0 } ) " { x } ) e. dom vol ) |
| 16 |
12 14
|
pm2.21dd |
|- ( ( T. /\ x e. ( ran ( RR X. { 0 } ) \ { 0 } ) ) -> ( vol ` ( `' ( RR X. { 0 } ) " { x } ) ) e. RR ) |
| 17 |
3 8 15 16
|
i1fd |
|- ( T. -> ( RR X. { 0 } ) e. dom S.1 ) |
| 18 |
17
|
mptru |
|- ( RR X. { 0 } ) e. dom S.1 |