Metamath Proof Explorer


Theorem i1f0

Description: The zero function is simple. (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Assertion i1f0 ( ℝ × { 0 } ) ∈ dom ∫1

Proof

Step Hyp Ref Expression
1 0re 0 ∈ ℝ
2 1 fconst6 ( ℝ × { 0 } ) : ℝ ⟶ ℝ
3 2 a1i ( ⊤ → ( ℝ × { 0 } ) : ℝ ⟶ ℝ )
4 snfi { 0 } ∈ Fin
5 rnxpss ran ( ℝ × { 0 } ) ⊆ { 0 }
6 ssfi ( ( { 0 } ∈ Fin ∧ ran ( ℝ × { 0 } ) ⊆ { 0 } ) → ran ( ℝ × { 0 } ) ∈ Fin )
7 4 5 6 mp2an ran ( ℝ × { 0 } ) ∈ Fin
8 7 a1i ( ⊤ → ran ( ℝ × { 0 } ) ∈ Fin )
9 difss ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ⊆ ran ( ℝ × { 0 } )
10 9 5 sstri ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ⊆ { 0 }
11 10 sseli ( 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) → 𝑥 ∈ { 0 } )
12 11 adantl ( ( ⊤ ∧ 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ) → 𝑥 ∈ { 0 } )
13 eldifn ( 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) → ¬ 𝑥 ∈ { 0 } )
14 13 adantl ( ( ⊤ ∧ 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ) → ¬ 𝑥 ∈ { 0 } )
15 12 14 pm2.21dd ( ( ⊤ ∧ 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ) → ( ( ℝ × { 0 } ) “ { 𝑥 } ) ∈ dom vol )
16 12 14 pm2.21dd ( ( ⊤ ∧ 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ) → ( vol ‘ ( ( ℝ × { 0 } ) “ { 𝑥 } ) ) ∈ ℝ )
17 3 8 15 16 i1fd ( ⊤ → ( ℝ × { 0 } ) ∈ dom ∫1 )
18 17 mptru ( ℝ × { 0 } ) ∈ dom ∫1