| Step |
Hyp |
Ref |
Expression |
| 1 |
|
i1fd.1 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 2 |
|
i1fd.2 |
⊢ ( 𝜑 → ran 𝐹 ∈ Fin ) |
| 3 |
|
i1fd.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol ) |
| 4 |
|
i1fd.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ) |
| 5 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) ∧ 0 ∈ 𝑥 ) → 𝐹 : ℝ ⟶ ℝ ) |
| 6 |
|
ffun |
⊢ ( 𝐹 : ℝ ⟶ ℝ → Fun 𝐹 ) |
| 7 |
|
funcnvcnv |
⊢ ( Fun 𝐹 → Fun ◡ ◡ 𝐹 ) |
| 8 |
|
imadif |
⊢ ( Fun ◡ ◡ 𝐹 → ( ◡ 𝐹 “ ( ℝ ∖ ( ℝ ∖ 𝑥 ) ) ) = ( ( ◡ 𝐹 “ ℝ ) ∖ ( ◡ 𝐹 “ ( ℝ ∖ 𝑥 ) ) ) ) |
| 9 |
5 6 7 8
|
4syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) ∧ 0 ∈ 𝑥 ) → ( ◡ 𝐹 “ ( ℝ ∖ ( ℝ ∖ 𝑥 ) ) ) = ( ( ◡ 𝐹 “ ℝ ) ∖ ( ◡ 𝐹 “ ( ℝ ∖ 𝑥 ) ) ) ) |
| 10 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
| 11 |
|
frn |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → ran (,) ⊆ 𝒫 ℝ ) |
| 12 |
10 11
|
ax-mp |
⊢ ran (,) ⊆ 𝒫 ℝ |
| 13 |
12
|
sseli |
⊢ ( 𝑥 ∈ ran (,) → 𝑥 ∈ 𝒫 ℝ ) |
| 14 |
13
|
elpwid |
⊢ ( 𝑥 ∈ ran (,) → 𝑥 ⊆ ℝ ) |
| 15 |
14
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) ∧ 0 ∈ 𝑥 ) → 𝑥 ⊆ ℝ ) |
| 16 |
|
dfss4 |
⊢ ( 𝑥 ⊆ ℝ ↔ ( ℝ ∖ ( ℝ ∖ 𝑥 ) ) = 𝑥 ) |
| 17 |
15 16
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) ∧ 0 ∈ 𝑥 ) → ( ℝ ∖ ( ℝ ∖ 𝑥 ) ) = 𝑥 ) |
| 18 |
17
|
imaeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) ∧ 0 ∈ 𝑥 ) → ( ◡ 𝐹 “ ( ℝ ∖ ( ℝ ∖ 𝑥 ) ) ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 19 |
9 18
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) ∧ 0 ∈ 𝑥 ) → ( ( ◡ 𝐹 “ ℝ ) ∖ ( ◡ 𝐹 “ ( ℝ ∖ 𝑥 ) ) ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 20 |
|
fimacnv |
⊢ ( 𝐹 : ℝ ⟶ ℝ → ( ◡ 𝐹 “ ℝ ) = ℝ ) |
| 21 |
5 20
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) ∧ 0 ∈ 𝑥 ) → ( ◡ 𝐹 “ ℝ ) = ℝ ) |
| 22 |
|
rembl |
⊢ ℝ ∈ dom vol |
| 23 |
21 22
|
eqeltrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) ∧ 0 ∈ 𝑥 ) → ( ◡ 𝐹 “ ℝ ) ∈ dom vol ) |
| 24 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → 𝐹 : ℝ ⟶ ℝ ) |
| 25 |
|
inpreima |
⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ( 𝑦 ∩ ran 𝐹 ) ) = ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( ◡ 𝐹 “ ran 𝐹 ) ) ) |
| 26 |
|
iunid |
⊢ ∪ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) { 𝑥 } = ( 𝑦 ∩ ran 𝐹 ) |
| 27 |
26
|
imaeq2i |
⊢ ( ◡ 𝐹 “ ∪ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) { 𝑥 } ) = ( ◡ 𝐹 “ ( 𝑦 ∩ ran 𝐹 ) ) |
| 28 |
|
imaiun |
⊢ ( ◡ 𝐹 “ ∪ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) { 𝑥 } ) = ∪ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑥 } ) |
| 29 |
27 28
|
eqtr3i |
⊢ ( ◡ 𝐹 “ ( 𝑦 ∩ ran 𝐹 ) ) = ∪ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑥 } ) |
| 30 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝑦 ) ⊆ dom 𝐹 |
| 31 |
|
cnvimarndm |
⊢ ( ◡ 𝐹 “ ran 𝐹 ) = dom 𝐹 |
| 32 |
30 31
|
sseqtrri |
⊢ ( ◡ 𝐹 “ 𝑦 ) ⊆ ( ◡ 𝐹 “ ran 𝐹 ) |
| 33 |
|
dfss2 |
⊢ ( ( ◡ 𝐹 “ 𝑦 ) ⊆ ( ◡ 𝐹 “ ran 𝐹 ) ↔ ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( ◡ 𝐹 “ ran 𝐹 ) ) = ( ◡ 𝐹 “ 𝑦 ) ) |
| 34 |
32 33
|
mpbi |
⊢ ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( ◡ 𝐹 “ ran 𝐹 ) ) = ( ◡ 𝐹 “ 𝑦 ) |
| 35 |
25 29 34
|
3eqtr3g |
⊢ ( Fun 𝐹 → ∪ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑥 } ) = ( ◡ 𝐹 “ 𝑦 ) ) |
| 36 |
24 6 35
|
3syl |
⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ∪ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑥 } ) = ( ◡ 𝐹 “ 𝑦 ) ) |
| 37 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ran 𝐹 ∈ Fin ) |
| 38 |
|
inss2 |
⊢ ( 𝑦 ∩ ran 𝐹 ) ⊆ ran 𝐹 |
| 39 |
|
ssfi |
⊢ ( ( ran 𝐹 ∈ Fin ∧ ( 𝑦 ∩ ran 𝐹 ) ⊆ ran 𝐹 ) → ( 𝑦 ∩ ran 𝐹 ) ∈ Fin ) |
| 40 |
37 38 39
|
sylancl |
⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ( 𝑦 ∩ ran 𝐹 ) ∈ Fin ) |
| 41 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) ∧ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ) → 𝜑 ) |
| 42 |
|
elinel1 |
⊢ ( 0 ∈ ( 𝑦 ∩ ran 𝐹 ) → 0 ∈ 𝑦 ) |
| 43 |
42
|
con3i |
⊢ ( ¬ 0 ∈ 𝑦 → ¬ 0 ∈ ( 𝑦 ∩ ran 𝐹 ) ) |
| 44 |
43
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ¬ 0 ∈ ( 𝑦 ∩ ran 𝐹 ) ) |
| 45 |
|
disjsn |
⊢ ( ( ( 𝑦 ∩ ran 𝐹 ) ∩ { 0 } ) = ∅ ↔ ¬ 0 ∈ ( 𝑦 ∩ ran 𝐹 ) ) |
| 46 |
44 45
|
sylibr |
⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ( ( 𝑦 ∩ ran 𝐹 ) ∩ { 0 } ) = ∅ ) |
| 47 |
|
reldisj |
⊢ ( ( 𝑦 ∩ ran 𝐹 ) ⊆ ran 𝐹 → ( ( ( 𝑦 ∩ ran 𝐹 ) ∩ { 0 } ) = ∅ ↔ ( 𝑦 ∩ ran 𝐹 ) ⊆ ( ran 𝐹 ∖ { 0 } ) ) ) |
| 48 |
38 47
|
ax-mp |
⊢ ( ( ( 𝑦 ∩ ran 𝐹 ) ∩ { 0 } ) = ∅ ↔ ( 𝑦 ∩ ran 𝐹 ) ⊆ ( ran 𝐹 ∖ { 0 } ) ) |
| 49 |
46 48
|
sylib |
⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ( 𝑦 ∩ ran 𝐹 ) ⊆ ( ran 𝐹 ∖ { 0 } ) ) |
| 50 |
49
|
sselda |
⊢ ( ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) ∧ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ) → 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) |
| 51 |
41 50 3
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) ∧ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ) → ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol ) |
| 52 |
51
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ∀ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol ) |
| 53 |
|
finiunmbl |
⊢ ( ( ( 𝑦 ∩ ran 𝐹 ) ∈ Fin ∧ ∀ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol ) → ∪ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol ) |
| 54 |
40 52 53
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ∪ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol ) |
| 55 |
36 54
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ( ◡ 𝐹 “ 𝑦 ) ∈ dom vol ) |
| 56 |
55
|
ex |
⊢ ( 𝜑 → ( ¬ 0 ∈ 𝑦 → ( ◡ 𝐹 “ 𝑦 ) ∈ dom vol ) ) |
| 57 |
56
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑦 ( ¬ 0 ∈ 𝑦 → ( ◡ 𝐹 “ 𝑦 ) ∈ dom vol ) ) |
| 58 |
57
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) ∧ 0 ∈ 𝑥 ) → ∀ 𝑦 ( ¬ 0 ∈ 𝑦 → ( ◡ 𝐹 “ 𝑦 ) ∈ dom vol ) ) |
| 59 |
|
elndif |
⊢ ( 0 ∈ 𝑥 → ¬ 0 ∈ ( ℝ ∖ 𝑥 ) ) |
| 60 |
59
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) ∧ 0 ∈ 𝑥 ) → ¬ 0 ∈ ( ℝ ∖ 𝑥 ) ) |
| 61 |
|
reex |
⊢ ℝ ∈ V |
| 62 |
61
|
difexi |
⊢ ( ℝ ∖ 𝑥 ) ∈ V |
| 63 |
|
eleq2 |
⊢ ( 𝑦 = ( ℝ ∖ 𝑥 ) → ( 0 ∈ 𝑦 ↔ 0 ∈ ( ℝ ∖ 𝑥 ) ) ) |
| 64 |
63
|
notbid |
⊢ ( 𝑦 = ( ℝ ∖ 𝑥 ) → ( ¬ 0 ∈ 𝑦 ↔ ¬ 0 ∈ ( ℝ ∖ 𝑥 ) ) ) |
| 65 |
|
imaeq2 |
⊢ ( 𝑦 = ( ℝ ∖ 𝑥 ) → ( ◡ 𝐹 “ 𝑦 ) = ( ◡ 𝐹 “ ( ℝ ∖ 𝑥 ) ) ) |
| 66 |
65
|
eleq1d |
⊢ ( 𝑦 = ( ℝ ∖ 𝑥 ) → ( ( ◡ 𝐹 “ 𝑦 ) ∈ dom vol ↔ ( ◡ 𝐹 “ ( ℝ ∖ 𝑥 ) ) ∈ dom vol ) ) |
| 67 |
64 66
|
imbi12d |
⊢ ( 𝑦 = ( ℝ ∖ 𝑥 ) → ( ( ¬ 0 ∈ 𝑦 → ( ◡ 𝐹 “ 𝑦 ) ∈ dom vol ) ↔ ( ¬ 0 ∈ ( ℝ ∖ 𝑥 ) → ( ◡ 𝐹 “ ( ℝ ∖ 𝑥 ) ) ∈ dom vol ) ) ) |
| 68 |
62 67
|
spcv |
⊢ ( ∀ 𝑦 ( ¬ 0 ∈ 𝑦 → ( ◡ 𝐹 “ 𝑦 ) ∈ dom vol ) → ( ¬ 0 ∈ ( ℝ ∖ 𝑥 ) → ( ◡ 𝐹 “ ( ℝ ∖ 𝑥 ) ) ∈ dom vol ) ) |
| 69 |
58 60 68
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) ∧ 0 ∈ 𝑥 ) → ( ◡ 𝐹 “ ( ℝ ∖ 𝑥 ) ) ∈ dom vol ) |
| 70 |
|
difmbl |
⊢ ( ( ( ◡ 𝐹 “ ℝ ) ∈ dom vol ∧ ( ◡ 𝐹 “ ( ℝ ∖ 𝑥 ) ) ∈ dom vol ) → ( ( ◡ 𝐹 “ ℝ ) ∖ ( ◡ 𝐹 “ ( ℝ ∖ 𝑥 ) ) ) ∈ dom vol ) |
| 71 |
23 69 70
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) ∧ 0 ∈ 𝑥 ) → ( ( ◡ 𝐹 “ ℝ ) ∖ ( ◡ 𝐹 “ ( ℝ ∖ 𝑥 ) ) ) ∈ dom vol ) |
| 72 |
19 71
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) ∧ 0 ∈ 𝑥 ) → ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) |
| 73 |
|
eleq2 |
⊢ ( 𝑦 = 𝑥 → ( 0 ∈ 𝑦 ↔ 0 ∈ 𝑥 ) ) |
| 74 |
73
|
notbid |
⊢ ( 𝑦 = 𝑥 → ( ¬ 0 ∈ 𝑦 ↔ ¬ 0 ∈ 𝑥 ) ) |
| 75 |
|
imaeq2 |
⊢ ( 𝑦 = 𝑥 → ( ◡ 𝐹 “ 𝑦 ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 76 |
75
|
eleq1d |
⊢ ( 𝑦 = 𝑥 → ( ( ◡ 𝐹 “ 𝑦 ) ∈ dom vol ↔ ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) ) |
| 77 |
74 76
|
imbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( ¬ 0 ∈ 𝑦 → ( ◡ 𝐹 “ 𝑦 ) ∈ dom vol ) ↔ ( ¬ 0 ∈ 𝑥 → ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) ) ) |
| 78 |
77
|
spvv |
⊢ ( ∀ 𝑦 ( ¬ 0 ∈ 𝑦 → ( ◡ 𝐹 “ 𝑦 ) ∈ dom vol ) → ( ¬ 0 ∈ 𝑥 → ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) ) |
| 79 |
57 78
|
syl |
⊢ ( 𝜑 → ( ¬ 0 ∈ 𝑥 → ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) ) |
| 80 |
79
|
imp |
⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑥 ) → ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) |
| 81 |
80
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) ∧ ¬ 0 ∈ 𝑥 ) → ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) |
| 82 |
72 81
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) → ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) |
| 83 |
82
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) |
| 84 |
|
ismbf |
⊢ ( 𝐹 : ℝ ⟶ ℝ → ( 𝐹 ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) ) |
| 85 |
1 84
|
syl |
⊢ ( 𝜑 → ( 𝐹 ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) ) |
| 86 |
83 85
|
mpbird |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
| 87 |
|
mblvol |
⊢ ( ( ◡ 𝐹 “ 𝑦 ) ∈ dom vol → ( vol ‘ ( ◡ 𝐹 “ 𝑦 ) ) = ( vol* ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 88 |
55 87
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ( vol ‘ ( ◡ 𝐹 “ 𝑦 ) ) = ( vol* ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 89 |
|
mblss |
⊢ ( ( ◡ 𝐹 “ 𝑦 ) ∈ dom vol → ( ◡ 𝐹 “ 𝑦 ) ⊆ ℝ ) |
| 90 |
55 89
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ( ◡ 𝐹 “ 𝑦 ) ⊆ ℝ ) |
| 91 |
|
mblvol |
⊢ ( ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol → ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) |
| 92 |
51 91
|
syl |
⊢ ( ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) ∧ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) |
| 93 |
41 50 4
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) ∧ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ) |
| 94 |
92 93
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) ∧ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ) → ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ) |
| 95 |
40 94
|
fsumrecl |
⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → Σ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ) |
| 96 |
36
|
fveq2d |
⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ( vol* ‘ ∪ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑥 } ) ) = ( vol* ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 97 |
|
mblss |
⊢ ( ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol → ( ◡ 𝐹 “ { 𝑥 } ) ⊆ ℝ ) |
| 98 |
51 97
|
syl |
⊢ ( ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) ∧ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ) → ( ◡ 𝐹 “ { 𝑥 } ) ⊆ ℝ ) |
| 99 |
98 94
|
jca |
⊢ ( ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) ∧ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ) → ( ( ◡ 𝐹 “ { 𝑥 } ) ⊆ ℝ ∧ ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ) ) |
| 100 |
99
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ∀ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( ( ◡ 𝐹 “ { 𝑥 } ) ⊆ ℝ ∧ ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ) ) |
| 101 |
|
ovolfiniun |
⊢ ( ( ( 𝑦 ∩ ran 𝐹 ) ∈ Fin ∧ ∀ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( ( ◡ 𝐹 “ { 𝑥 } ) ⊆ ℝ ∧ ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ) ) → ( vol* ‘ ∪ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑥 } ) ) ≤ Σ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) |
| 102 |
40 100 101
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ( vol* ‘ ∪ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑥 } ) ) ≤ Σ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) |
| 103 |
96 102
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ( vol* ‘ ( ◡ 𝐹 “ 𝑦 ) ) ≤ Σ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) |
| 104 |
|
ovollecl |
⊢ ( ( ( ◡ 𝐹 “ 𝑦 ) ⊆ ℝ ∧ Σ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ∧ ( vol* ‘ ( ◡ 𝐹 “ 𝑦 ) ) ≤ Σ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) → ( vol* ‘ ( ◡ 𝐹 “ 𝑦 ) ) ∈ ℝ ) |
| 105 |
90 95 103 104
|
syl3anc |
⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ( vol* ‘ ( ◡ 𝐹 “ 𝑦 ) ) ∈ ℝ ) |
| 106 |
88 105
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ( vol ‘ ( ◡ 𝐹 “ 𝑦 ) ) ∈ ℝ ) |
| 107 |
106
|
ex |
⊢ ( 𝜑 → ( ¬ 0 ∈ 𝑦 → ( vol ‘ ( ◡ 𝐹 “ 𝑦 ) ) ∈ ℝ ) ) |
| 108 |
107
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑦 ( ¬ 0 ∈ 𝑦 → ( vol ‘ ( ◡ 𝐹 “ 𝑦 ) ) ∈ ℝ ) ) |
| 109 |
|
neldifsn |
⊢ ¬ 0 ∈ ( ℝ ∖ { 0 } ) |
| 110 |
61
|
difexi |
⊢ ( ℝ ∖ { 0 } ) ∈ V |
| 111 |
|
eleq2 |
⊢ ( 𝑦 = ( ℝ ∖ { 0 } ) → ( 0 ∈ 𝑦 ↔ 0 ∈ ( ℝ ∖ { 0 } ) ) ) |
| 112 |
111
|
notbid |
⊢ ( 𝑦 = ( ℝ ∖ { 0 } ) → ( ¬ 0 ∈ 𝑦 ↔ ¬ 0 ∈ ( ℝ ∖ { 0 } ) ) ) |
| 113 |
|
imaeq2 |
⊢ ( 𝑦 = ( ℝ ∖ { 0 } ) → ( ◡ 𝐹 “ 𝑦 ) = ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) |
| 114 |
113
|
fveq2d |
⊢ ( 𝑦 = ( ℝ ∖ { 0 } ) → ( vol ‘ ( ◡ 𝐹 “ 𝑦 ) ) = ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ) |
| 115 |
114
|
eleq1d |
⊢ ( 𝑦 = ( ℝ ∖ { 0 } ) → ( ( vol ‘ ( ◡ 𝐹 “ 𝑦 ) ) ∈ ℝ ↔ ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) ) |
| 116 |
112 115
|
imbi12d |
⊢ ( 𝑦 = ( ℝ ∖ { 0 } ) → ( ( ¬ 0 ∈ 𝑦 → ( vol ‘ ( ◡ 𝐹 “ 𝑦 ) ) ∈ ℝ ) ↔ ( ¬ 0 ∈ ( ℝ ∖ { 0 } ) → ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) ) ) |
| 117 |
110 116
|
spcv |
⊢ ( ∀ 𝑦 ( ¬ 0 ∈ 𝑦 → ( vol ‘ ( ◡ 𝐹 “ 𝑦 ) ) ∈ ℝ ) → ( ¬ 0 ∈ ( ℝ ∖ { 0 } ) → ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) ) |
| 118 |
108 109 117
|
mpisyl |
⊢ ( 𝜑 → ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) |
| 119 |
1 2 118
|
3jca |
⊢ ( 𝜑 → ( 𝐹 : ℝ ⟶ ℝ ∧ ran 𝐹 ∈ Fin ∧ ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) ) |
| 120 |
|
isi1f |
⊢ ( 𝐹 ∈ dom ∫1 ↔ ( 𝐹 ∈ MblFn ∧ ( 𝐹 : ℝ ⟶ ℝ ∧ ran 𝐹 ∈ Fin ∧ ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) ) ) |
| 121 |
86 119 120
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) |