| Step |
Hyp |
Ref |
Expression |
| 1 |
|
i1fd.1 |
|- ( ph -> F : RR --> RR ) |
| 2 |
|
i1fd.2 |
|- ( ph -> ran F e. Fin ) |
| 3 |
|
i1fd.3 |
|- ( ( ph /\ x e. ( ran F \ { 0 } ) ) -> ( `' F " { x } ) e. dom vol ) |
| 4 |
|
i1fd.4 |
|- ( ( ph /\ x e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { x } ) ) e. RR ) |
| 5 |
1
|
ad2antrr |
|- ( ( ( ph /\ x e. ran (,) ) /\ 0 e. x ) -> F : RR --> RR ) |
| 6 |
|
ffun |
|- ( F : RR --> RR -> Fun F ) |
| 7 |
|
funcnvcnv |
|- ( Fun F -> Fun `' `' F ) |
| 8 |
|
imadif |
|- ( Fun `' `' F -> ( `' F " ( RR \ ( RR \ x ) ) ) = ( ( `' F " RR ) \ ( `' F " ( RR \ x ) ) ) ) |
| 9 |
5 6 7 8
|
4syl |
|- ( ( ( ph /\ x e. ran (,) ) /\ 0 e. x ) -> ( `' F " ( RR \ ( RR \ x ) ) ) = ( ( `' F " RR ) \ ( `' F " ( RR \ x ) ) ) ) |
| 10 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
| 11 |
|
frn |
|- ( (,) : ( RR* X. RR* ) --> ~P RR -> ran (,) C_ ~P RR ) |
| 12 |
10 11
|
ax-mp |
|- ran (,) C_ ~P RR |
| 13 |
12
|
sseli |
|- ( x e. ran (,) -> x e. ~P RR ) |
| 14 |
13
|
elpwid |
|- ( x e. ran (,) -> x C_ RR ) |
| 15 |
14
|
ad2antlr |
|- ( ( ( ph /\ x e. ran (,) ) /\ 0 e. x ) -> x C_ RR ) |
| 16 |
|
dfss4 |
|- ( x C_ RR <-> ( RR \ ( RR \ x ) ) = x ) |
| 17 |
15 16
|
sylib |
|- ( ( ( ph /\ x e. ran (,) ) /\ 0 e. x ) -> ( RR \ ( RR \ x ) ) = x ) |
| 18 |
17
|
imaeq2d |
|- ( ( ( ph /\ x e. ran (,) ) /\ 0 e. x ) -> ( `' F " ( RR \ ( RR \ x ) ) ) = ( `' F " x ) ) |
| 19 |
9 18
|
eqtr3d |
|- ( ( ( ph /\ x e. ran (,) ) /\ 0 e. x ) -> ( ( `' F " RR ) \ ( `' F " ( RR \ x ) ) ) = ( `' F " x ) ) |
| 20 |
|
fimacnv |
|- ( F : RR --> RR -> ( `' F " RR ) = RR ) |
| 21 |
5 20
|
syl |
|- ( ( ( ph /\ x e. ran (,) ) /\ 0 e. x ) -> ( `' F " RR ) = RR ) |
| 22 |
|
rembl |
|- RR e. dom vol |
| 23 |
21 22
|
eqeltrdi |
|- ( ( ( ph /\ x e. ran (,) ) /\ 0 e. x ) -> ( `' F " RR ) e. dom vol ) |
| 24 |
1
|
adantr |
|- ( ( ph /\ -. 0 e. y ) -> F : RR --> RR ) |
| 25 |
|
inpreima |
|- ( Fun F -> ( `' F " ( y i^i ran F ) ) = ( ( `' F " y ) i^i ( `' F " ran F ) ) ) |
| 26 |
|
iunid |
|- U_ x e. ( y i^i ran F ) { x } = ( y i^i ran F ) |
| 27 |
26
|
imaeq2i |
|- ( `' F " U_ x e. ( y i^i ran F ) { x } ) = ( `' F " ( y i^i ran F ) ) |
| 28 |
|
imaiun |
|- ( `' F " U_ x e. ( y i^i ran F ) { x } ) = U_ x e. ( y i^i ran F ) ( `' F " { x } ) |
| 29 |
27 28
|
eqtr3i |
|- ( `' F " ( y i^i ran F ) ) = U_ x e. ( y i^i ran F ) ( `' F " { x } ) |
| 30 |
|
cnvimass |
|- ( `' F " y ) C_ dom F |
| 31 |
|
cnvimarndm |
|- ( `' F " ran F ) = dom F |
| 32 |
30 31
|
sseqtrri |
|- ( `' F " y ) C_ ( `' F " ran F ) |
| 33 |
|
dfss2 |
|- ( ( `' F " y ) C_ ( `' F " ran F ) <-> ( ( `' F " y ) i^i ( `' F " ran F ) ) = ( `' F " y ) ) |
| 34 |
32 33
|
mpbi |
|- ( ( `' F " y ) i^i ( `' F " ran F ) ) = ( `' F " y ) |
| 35 |
25 29 34
|
3eqtr3g |
|- ( Fun F -> U_ x e. ( y i^i ran F ) ( `' F " { x } ) = ( `' F " y ) ) |
| 36 |
24 6 35
|
3syl |
|- ( ( ph /\ -. 0 e. y ) -> U_ x e. ( y i^i ran F ) ( `' F " { x } ) = ( `' F " y ) ) |
| 37 |
2
|
adantr |
|- ( ( ph /\ -. 0 e. y ) -> ran F e. Fin ) |
| 38 |
|
inss2 |
|- ( y i^i ran F ) C_ ran F |
| 39 |
|
ssfi |
|- ( ( ran F e. Fin /\ ( y i^i ran F ) C_ ran F ) -> ( y i^i ran F ) e. Fin ) |
| 40 |
37 38 39
|
sylancl |
|- ( ( ph /\ -. 0 e. y ) -> ( y i^i ran F ) e. Fin ) |
| 41 |
|
simpll |
|- ( ( ( ph /\ -. 0 e. y ) /\ x e. ( y i^i ran F ) ) -> ph ) |
| 42 |
|
elinel1 |
|- ( 0 e. ( y i^i ran F ) -> 0 e. y ) |
| 43 |
42
|
con3i |
|- ( -. 0 e. y -> -. 0 e. ( y i^i ran F ) ) |
| 44 |
43
|
adantl |
|- ( ( ph /\ -. 0 e. y ) -> -. 0 e. ( y i^i ran F ) ) |
| 45 |
|
disjsn |
|- ( ( ( y i^i ran F ) i^i { 0 } ) = (/) <-> -. 0 e. ( y i^i ran F ) ) |
| 46 |
44 45
|
sylibr |
|- ( ( ph /\ -. 0 e. y ) -> ( ( y i^i ran F ) i^i { 0 } ) = (/) ) |
| 47 |
|
reldisj |
|- ( ( y i^i ran F ) C_ ran F -> ( ( ( y i^i ran F ) i^i { 0 } ) = (/) <-> ( y i^i ran F ) C_ ( ran F \ { 0 } ) ) ) |
| 48 |
38 47
|
ax-mp |
|- ( ( ( y i^i ran F ) i^i { 0 } ) = (/) <-> ( y i^i ran F ) C_ ( ran F \ { 0 } ) ) |
| 49 |
46 48
|
sylib |
|- ( ( ph /\ -. 0 e. y ) -> ( y i^i ran F ) C_ ( ran F \ { 0 } ) ) |
| 50 |
49
|
sselda |
|- ( ( ( ph /\ -. 0 e. y ) /\ x e. ( y i^i ran F ) ) -> x e. ( ran F \ { 0 } ) ) |
| 51 |
41 50 3
|
syl2anc |
|- ( ( ( ph /\ -. 0 e. y ) /\ x e. ( y i^i ran F ) ) -> ( `' F " { x } ) e. dom vol ) |
| 52 |
51
|
ralrimiva |
|- ( ( ph /\ -. 0 e. y ) -> A. x e. ( y i^i ran F ) ( `' F " { x } ) e. dom vol ) |
| 53 |
|
finiunmbl |
|- ( ( ( y i^i ran F ) e. Fin /\ A. x e. ( y i^i ran F ) ( `' F " { x } ) e. dom vol ) -> U_ x e. ( y i^i ran F ) ( `' F " { x } ) e. dom vol ) |
| 54 |
40 52 53
|
syl2anc |
|- ( ( ph /\ -. 0 e. y ) -> U_ x e. ( y i^i ran F ) ( `' F " { x } ) e. dom vol ) |
| 55 |
36 54
|
eqeltrrd |
|- ( ( ph /\ -. 0 e. y ) -> ( `' F " y ) e. dom vol ) |
| 56 |
55
|
ex |
|- ( ph -> ( -. 0 e. y -> ( `' F " y ) e. dom vol ) ) |
| 57 |
56
|
alrimiv |
|- ( ph -> A. y ( -. 0 e. y -> ( `' F " y ) e. dom vol ) ) |
| 58 |
57
|
ad2antrr |
|- ( ( ( ph /\ x e. ran (,) ) /\ 0 e. x ) -> A. y ( -. 0 e. y -> ( `' F " y ) e. dom vol ) ) |
| 59 |
|
elndif |
|- ( 0 e. x -> -. 0 e. ( RR \ x ) ) |
| 60 |
59
|
adantl |
|- ( ( ( ph /\ x e. ran (,) ) /\ 0 e. x ) -> -. 0 e. ( RR \ x ) ) |
| 61 |
|
reex |
|- RR e. _V |
| 62 |
61
|
difexi |
|- ( RR \ x ) e. _V |
| 63 |
|
eleq2 |
|- ( y = ( RR \ x ) -> ( 0 e. y <-> 0 e. ( RR \ x ) ) ) |
| 64 |
63
|
notbid |
|- ( y = ( RR \ x ) -> ( -. 0 e. y <-> -. 0 e. ( RR \ x ) ) ) |
| 65 |
|
imaeq2 |
|- ( y = ( RR \ x ) -> ( `' F " y ) = ( `' F " ( RR \ x ) ) ) |
| 66 |
65
|
eleq1d |
|- ( y = ( RR \ x ) -> ( ( `' F " y ) e. dom vol <-> ( `' F " ( RR \ x ) ) e. dom vol ) ) |
| 67 |
64 66
|
imbi12d |
|- ( y = ( RR \ x ) -> ( ( -. 0 e. y -> ( `' F " y ) e. dom vol ) <-> ( -. 0 e. ( RR \ x ) -> ( `' F " ( RR \ x ) ) e. dom vol ) ) ) |
| 68 |
62 67
|
spcv |
|- ( A. y ( -. 0 e. y -> ( `' F " y ) e. dom vol ) -> ( -. 0 e. ( RR \ x ) -> ( `' F " ( RR \ x ) ) e. dom vol ) ) |
| 69 |
58 60 68
|
sylc |
|- ( ( ( ph /\ x e. ran (,) ) /\ 0 e. x ) -> ( `' F " ( RR \ x ) ) e. dom vol ) |
| 70 |
|
difmbl |
|- ( ( ( `' F " RR ) e. dom vol /\ ( `' F " ( RR \ x ) ) e. dom vol ) -> ( ( `' F " RR ) \ ( `' F " ( RR \ x ) ) ) e. dom vol ) |
| 71 |
23 69 70
|
syl2anc |
|- ( ( ( ph /\ x e. ran (,) ) /\ 0 e. x ) -> ( ( `' F " RR ) \ ( `' F " ( RR \ x ) ) ) e. dom vol ) |
| 72 |
19 71
|
eqeltrrd |
|- ( ( ( ph /\ x e. ran (,) ) /\ 0 e. x ) -> ( `' F " x ) e. dom vol ) |
| 73 |
|
eleq2 |
|- ( y = x -> ( 0 e. y <-> 0 e. x ) ) |
| 74 |
73
|
notbid |
|- ( y = x -> ( -. 0 e. y <-> -. 0 e. x ) ) |
| 75 |
|
imaeq2 |
|- ( y = x -> ( `' F " y ) = ( `' F " x ) ) |
| 76 |
75
|
eleq1d |
|- ( y = x -> ( ( `' F " y ) e. dom vol <-> ( `' F " x ) e. dom vol ) ) |
| 77 |
74 76
|
imbi12d |
|- ( y = x -> ( ( -. 0 e. y -> ( `' F " y ) e. dom vol ) <-> ( -. 0 e. x -> ( `' F " x ) e. dom vol ) ) ) |
| 78 |
77
|
spvv |
|- ( A. y ( -. 0 e. y -> ( `' F " y ) e. dom vol ) -> ( -. 0 e. x -> ( `' F " x ) e. dom vol ) ) |
| 79 |
57 78
|
syl |
|- ( ph -> ( -. 0 e. x -> ( `' F " x ) e. dom vol ) ) |
| 80 |
79
|
imp |
|- ( ( ph /\ -. 0 e. x ) -> ( `' F " x ) e. dom vol ) |
| 81 |
80
|
adantlr |
|- ( ( ( ph /\ x e. ran (,) ) /\ -. 0 e. x ) -> ( `' F " x ) e. dom vol ) |
| 82 |
72 81
|
pm2.61dan |
|- ( ( ph /\ x e. ran (,) ) -> ( `' F " x ) e. dom vol ) |
| 83 |
82
|
ralrimiva |
|- ( ph -> A. x e. ran (,) ( `' F " x ) e. dom vol ) |
| 84 |
|
ismbf |
|- ( F : RR --> RR -> ( F e. MblFn <-> A. x e. ran (,) ( `' F " x ) e. dom vol ) ) |
| 85 |
1 84
|
syl |
|- ( ph -> ( F e. MblFn <-> A. x e. ran (,) ( `' F " x ) e. dom vol ) ) |
| 86 |
83 85
|
mpbird |
|- ( ph -> F e. MblFn ) |
| 87 |
|
mblvol |
|- ( ( `' F " y ) e. dom vol -> ( vol ` ( `' F " y ) ) = ( vol* ` ( `' F " y ) ) ) |
| 88 |
55 87
|
syl |
|- ( ( ph /\ -. 0 e. y ) -> ( vol ` ( `' F " y ) ) = ( vol* ` ( `' F " y ) ) ) |
| 89 |
|
mblss |
|- ( ( `' F " y ) e. dom vol -> ( `' F " y ) C_ RR ) |
| 90 |
55 89
|
syl |
|- ( ( ph /\ -. 0 e. y ) -> ( `' F " y ) C_ RR ) |
| 91 |
|
mblvol |
|- ( ( `' F " { x } ) e. dom vol -> ( vol ` ( `' F " { x } ) ) = ( vol* ` ( `' F " { x } ) ) ) |
| 92 |
51 91
|
syl |
|- ( ( ( ph /\ -. 0 e. y ) /\ x e. ( y i^i ran F ) ) -> ( vol ` ( `' F " { x } ) ) = ( vol* ` ( `' F " { x } ) ) ) |
| 93 |
41 50 4
|
syl2anc |
|- ( ( ( ph /\ -. 0 e. y ) /\ x e. ( y i^i ran F ) ) -> ( vol ` ( `' F " { x } ) ) e. RR ) |
| 94 |
92 93
|
eqeltrrd |
|- ( ( ( ph /\ -. 0 e. y ) /\ x e. ( y i^i ran F ) ) -> ( vol* ` ( `' F " { x } ) ) e. RR ) |
| 95 |
40 94
|
fsumrecl |
|- ( ( ph /\ -. 0 e. y ) -> sum_ x e. ( y i^i ran F ) ( vol* ` ( `' F " { x } ) ) e. RR ) |
| 96 |
36
|
fveq2d |
|- ( ( ph /\ -. 0 e. y ) -> ( vol* ` U_ x e. ( y i^i ran F ) ( `' F " { x } ) ) = ( vol* ` ( `' F " y ) ) ) |
| 97 |
|
mblss |
|- ( ( `' F " { x } ) e. dom vol -> ( `' F " { x } ) C_ RR ) |
| 98 |
51 97
|
syl |
|- ( ( ( ph /\ -. 0 e. y ) /\ x e. ( y i^i ran F ) ) -> ( `' F " { x } ) C_ RR ) |
| 99 |
98 94
|
jca |
|- ( ( ( ph /\ -. 0 e. y ) /\ x e. ( y i^i ran F ) ) -> ( ( `' F " { x } ) C_ RR /\ ( vol* ` ( `' F " { x } ) ) e. RR ) ) |
| 100 |
99
|
ralrimiva |
|- ( ( ph /\ -. 0 e. y ) -> A. x e. ( y i^i ran F ) ( ( `' F " { x } ) C_ RR /\ ( vol* ` ( `' F " { x } ) ) e. RR ) ) |
| 101 |
|
ovolfiniun |
|- ( ( ( y i^i ran F ) e. Fin /\ A. x e. ( y i^i ran F ) ( ( `' F " { x } ) C_ RR /\ ( vol* ` ( `' F " { x } ) ) e. RR ) ) -> ( vol* ` U_ x e. ( y i^i ran F ) ( `' F " { x } ) ) <_ sum_ x e. ( y i^i ran F ) ( vol* ` ( `' F " { x } ) ) ) |
| 102 |
40 100 101
|
syl2anc |
|- ( ( ph /\ -. 0 e. y ) -> ( vol* ` U_ x e. ( y i^i ran F ) ( `' F " { x } ) ) <_ sum_ x e. ( y i^i ran F ) ( vol* ` ( `' F " { x } ) ) ) |
| 103 |
96 102
|
eqbrtrrd |
|- ( ( ph /\ -. 0 e. y ) -> ( vol* ` ( `' F " y ) ) <_ sum_ x e. ( y i^i ran F ) ( vol* ` ( `' F " { x } ) ) ) |
| 104 |
|
ovollecl |
|- ( ( ( `' F " y ) C_ RR /\ sum_ x e. ( y i^i ran F ) ( vol* ` ( `' F " { x } ) ) e. RR /\ ( vol* ` ( `' F " y ) ) <_ sum_ x e. ( y i^i ran F ) ( vol* ` ( `' F " { x } ) ) ) -> ( vol* ` ( `' F " y ) ) e. RR ) |
| 105 |
90 95 103 104
|
syl3anc |
|- ( ( ph /\ -. 0 e. y ) -> ( vol* ` ( `' F " y ) ) e. RR ) |
| 106 |
88 105
|
eqeltrd |
|- ( ( ph /\ -. 0 e. y ) -> ( vol ` ( `' F " y ) ) e. RR ) |
| 107 |
106
|
ex |
|- ( ph -> ( -. 0 e. y -> ( vol ` ( `' F " y ) ) e. RR ) ) |
| 108 |
107
|
alrimiv |
|- ( ph -> A. y ( -. 0 e. y -> ( vol ` ( `' F " y ) ) e. RR ) ) |
| 109 |
|
neldifsn |
|- -. 0 e. ( RR \ { 0 } ) |
| 110 |
61
|
difexi |
|- ( RR \ { 0 } ) e. _V |
| 111 |
|
eleq2 |
|- ( y = ( RR \ { 0 } ) -> ( 0 e. y <-> 0 e. ( RR \ { 0 } ) ) ) |
| 112 |
111
|
notbid |
|- ( y = ( RR \ { 0 } ) -> ( -. 0 e. y <-> -. 0 e. ( RR \ { 0 } ) ) ) |
| 113 |
|
imaeq2 |
|- ( y = ( RR \ { 0 } ) -> ( `' F " y ) = ( `' F " ( RR \ { 0 } ) ) ) |
| 114 |
113
|
fveq2d |
|- ( y = ( RR \ { 0 } ) -> ( vol ` ( `' F " y ) ) = ( vol ` ( `' F " ( RR \ { 0 } ) ) ) ) |
| 115 |
114
|
eleq1d |
|- ( y = ( RR \ { 0 } ) -> ( ( vol ` ( `' F " y ) ) e. RR <-> ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) ) |
| 116 |
112 115
|
imbi12d |
|- ( y = ( RR \ { 0 } ) -> ( ( -. 0 e. y -> ( vol ` ( `' F " y ) ) e. RR ) <-> ( -. 0 e. ( RR \ { 0 } ) -> ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) ) ) |
| 117 |
110 116
|
spcv |
|- ( A. y ( -. 0 e. y -> ( vol ` ( `' F " y ) ) e. RR ) -> ( -. 0 e. ( RR \ { 0 } ) -> ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) ) |
| 118 |
108 109 117
|
mpisyl |
|- ( ph -> ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) |
| 119 |
1 2 118
|
3jca |
|- ( ph -> ( F : RR --> RR /\ ran F e. Fin /\ ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) ) |
| 120 |
|
isi1f |
|- ( F e. dom S.1 <-> ( F e. MblFn /\ ( F : RR --> RR /\ ran F e. Fin /\ ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) ) ) |
| 121 |
86 119 120
|
sylanbrc |
|- ( ph -> F e. dom S.1 ) |