Metamath Proof Explorer


Theorem spcv

Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994)

Ref Expression
Hypotheses spcv.1
|- A e. _V
spcv.2
|- ( x = A -> ( ph <-> ps ) )
Assertion spcv
|- ( A. x ph -> ps )

Proof

Step Hyp Ref Expression
1 spcv.1
 |-  A e. _V
2 spcv.2
 |-  ( x = A -> ( ph <-> ps ) )
3 2 spcgv
 |-  ( A e. _V -> ( A. x ph -> ps ) )
4 1 3 ax-mp
 |-  ( A. x ph -> ps )