Step |
Hyp |
Ref |
Expression |
1 |
|
pnfnre |
⊢ +∞ ∉ ℝ |
2 |
1
|
neli |
⊢ ¬ +∞ ∈ ℝ |
3 |
|
rembl |
⊢ ℝ ∈ dom vol |
4 |
|
mblvol |
⊢ ( ℝ ∈ dom vol → ( vol ‘ ℝ ) = ( vol* ‘ ℝ ) ) |
5 |
3 4
|
ax-mp |
⊢ ( vol ‘ ℝ ) = ( vol* ‘ ℝ ) |
6 |
|
ovolre |
⊢ ( vol* ‘ ℝ ) = +∞ |
7 |
5 6
|
eqtri |
⊢ ( vol ‘ ℝ ) = +∞ |
8 |
|
cnvimarndm |
⊢ ( ◡ 𝐹 “ ran 𝐹 ) = dom 𝐹 |
9 |
|
i1ff |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) |
10 |
9
|
fdmd |
⊢ ( 𝐹 ∈ dom ∫1 → dom 𝐹 = ℝ ) |
11 |
10
|
adantr |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹 ) → dom 𝐹 = ℝ ) |
12 |
8 11
|
syl5eq |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹 ) → ( ◡ 𝐹 “ ran 𝐹 ) = ℝ ) |
13 |
12
|
fveq2d |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹 ) → ( vol ‘ ( ◡ 𝐹 “ ran 𝐹 ) ) = ( vol ‘ ℝ ) ) |
14 |
|
i1fima2 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹 ) → ( vol ‘ ( ◡ 𝐹 “ ran 𝐹 ) ) ∈ ℝ ) |
15 |
13 14
|
eqeltrrd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹 ) → ( vol ‘ ℝ ) ∈ ℝ ) |
16 |
7 15
|
eqeltrrid |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹 ) → +∞ ∈ ℝ ) |
17 |
16
|
ex |
⊢ ( 𝐹 ∈ dom ∫1 → ( ¬ 0 ∈ ran 𝐹 → +∞ ∈ ℝ ) ) |
18 |
2 17
|
mt3i |
⊢ ( 𝐹 ∈ dom ∫1 → 0 ∈ ran 𝐹 ) |